BuyFindarrow_forward

Contemporary Mathematics for Busin...

8th Edition
Robert Brechner + 1 other
ISBN: 9781305585447

Solutions

Chapter
Section
BuyFindarrow_forward

Contemporary Mathematics for Busin...

8th Edition
Robert Brechner + 1 other
ISBN: 9781305585447
Textbook Problem

Solve the following equations for the unknown and prove the solutions.

25 A 11 = 64

To determine

To calculate: The value of unknown from the equation 25A11=64 and prove the result.

Explanation

Given Information:

The provided equation is 25A11=64.

Formula used:

To solve the equation and prove the solution, follow the steps as mentioned below.

Step 1: Rearrange the unknown values to the left side and known values to the right side of the

equation by using the following sequence of order to solve the equation.

(a) Paranthesis, if any then clear it before performing the next operations by mutiplying the coefficient with each term inside the paranthesis.

(b) In order to solve the equations with more than one operation, apply opposite operations from the provided operation in the equation, that is, addition if substraction is in the equation and multiplication if division is provided in the equation and vice versa.

Step 2: Prove the solution by substituting the value obtained from step 1 in the original equation then check the left and right of the equation if, they are equal then the answer is correct.

Calculation:

Consider the provided equation, 25A11=64

To arrange the known values to the right side and unknown to the left side, apply the opposite operation of subtraction, add 11 to both sides,

25A11=64       +11</

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started
Sect-5.I P-1RESect-5.I P-2RESect-5.I P-3RESect-5.I P-4RESect-5.I P-5RESect-5.I P-6RESect-5.I P-7RESect-5.I P-8RESect-5.I P-9RESect-5.I P-10RESect-5.I P-11RESect-5.I P-12RESect-5.I P-13RESect-5.I P-14RESect-5.I P-15RESect-5.I P-16RESect-5.I P-17RESect-5.I P-18RESect-5.I P-19RESect-5.I P-20RESect-5.I P-21RESect-5.I P-22RESect-5.I P-23RESect-5.I P-24RESect-5.I P-25RESect-5.I P-26RESect-5.I P-27RESect-5.I P-28RESect-5.I P-29RESect-5.I P-30RESect-5.I P-31RESect-5.I P-32RESect-5.II P-11TIESect-5.II P-12TIESect-5.II P-13TIESect-5.II P-14TIESect-5.II P-15TIESect-5.II P-16TIESect-5.II P-17TIESect-5.II P-1RESect-5.II P-2RESect-5.II P-3RESect-5.II P-4RESect-5.II P-5RESect-5.II P-6RESect-5.II P-7RESect-5.II P-8RESect-5.II P-9RESect-5.II P-10RESect-5.II P-11RESect-5.II P-12RESect-5.II P-13RESect-5.II P-14RESect-5.II P-15RESect-5.II P-16RESect-5.II P-17RESect-5.II P-18RESect-5.II P-19RESect-5.II P-20RESect-5.II P-21RESect-5.II P-22RESect-5.II P-23RESect-5.II P-24RESect-5.II P-25RESect-5.II P-26RESect-5.II P-27RESect-5.II P-28RESect-5.II P-29RESect-5.II P-30RECh-5 P-1CRCh-5 P-2CRCh-5 P-3CRCh-5 P-4CRCh-5 P-5CRCh-5 P-6CRCh-5 P-7CRCh-5 P-8CRCh-5 P-9CRCh-5 P-10CRCh-5 P-11CRCh-5 P-12CRCh-5 P-13CRCh-5 P-14CRCh-5 P-1ATCh-5 P-2ATCh-5 P-3ATCh-5 P-4ATCh-5 P-5ATCh-5 P-6ATCh-5 P-7ATCh-5 P-8ATCh-5 P-9ATCh-5 P-10ATCh-5 P-11ATCh-5 P-12ATCh-5 P-13ATCh-5 P-14ATCh-5 P-15ATCh-5 P-16ATCh-5 P-17ATCh-5 P-18ATCh-5 P-19ATCh-5 P-20ATCh-5 P-21ATCh-5 P-22ATCh-5 P-23ATCh-5 P-24ATCh-5 P-25ATCh-5 P-26ATCh-5 P-27ATCh-5 P-28ATCh-5 P-29ATCh-5 P-30ATCh-5 P-31ATCh-5 P-32ATCh-5 P-33ATCh-5 P-34AT

Additional Math Solutions

Find more solutions based on key concepts

Show solutions add

let f(x) = x3 + 5, g(x) = x2 2, and h(x)= 2x + 4. Find the rule for each function. 5. fg

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

Sketch the graphs of the equations in Exercises 512. 2yx2=1

Finite Mathematics and Applied Calculus (MindTap Course List)

Evaluate the integral. 15MeMdM

Calculus (MindTap Course List)

Find a definite integral for the area of the surface of revolution about the x-axis obtained by rotating the cu...

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th

For what values of p does the series converge?

Study Guide for Stewart's Multivariable Calculus, 8th