Physics: Principles with Applications
Physics: Principles with Applications
6th Edition
ISBN: 9780130606204
Author: Douglas C. Giancoli
Publisher: Prentice Hall
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 6, Problem 17Q

The energy transformations in pole vaulting and archery are discussed in this Chapter. In a similar fashion, discuss the energy transformations related to: (a) hitting a golf ball; (b) serving a tennis ball; and (c) shooting a basket in basketball.

Expert Solution
Check Mark
To determine

(a)

Discuss the energy transformations related to hitting a golf ball.

Answer to Problem 17Q

Solution:

The ball initially has kinetic energy that is then transformed into gravitational potential energy until reaching the maximum height where the kinetic energy is zero and its potential gravitational energy is maximum. Then, all its gravitational potential energy is transformed into kinetic energy at the moment of reaching the ground.

Explanation of Solution

Initially, the golf ball is at rest. It has no initial kinetic energy or gravitational potential energy. The initial energy that the golf ball receives comes from the impact of the golf club which brings a determined kinetic energy. This energy is transferred to the ball by means of the work done by the club on the ball. Once the ball begins its movement with an initial kinetic energy as it ascends in parabolic trajectory the kinetic energy is transformed into gravitational potential energy until it reaches its maximum height, in that instant the gravitational potential energy is maximum while its kinetic energy is zero. Then when the ball continues its descent the gravitational potential energy is transformed into kinetic energy. Finally, at the moment when the ball hits the ground, all its gravitational potential energy has been transformed to kinetic energy.

Expert Solution
Check Mark
To determine

(b)

Discuss the energy transformations related to serving a tennis ball

Answer to Problem 17Q

Solution:

The ball initially has gravitational potential energy when the racket does work on it transferring kinetic energy, in that the ball has both kinetic energy and gravitational potential which decreases until it hits the ground where its kinetic energy is maximum and its gravitational potential energy is zero.

Explanation of Solution

Initially, the tennis ball is thrown vertically upwards in which its gravitational potential energy increases until it becomes maximum at the point where its kinetic energy is zero, at the instant, it descends vertically downwards the ball is hit by the racket. The racket transfers to the ball kinetic energy through work that the player’s arm makes on the ball by means of the racket. At that moment the ball has gravitational potential energy and kinetic energy, as the ball advances its gravitational potential energy decreases and it’s kinetic energy increases until it becomes maximum while the gravitational potential energy is zero just before hits the ground.

Expert Solution
Check Mark
To determine

(c)

Discuss the energy transformations related to shooting a basket in basketball.

Answer to Problem 17Q

Solution:

The ball initially has both potential energy and kinetic energy, then work is done on the ball transferring kinetic energy that decreases until it becomes zero at the highest point where the potential gravitational energy is maximum. This gravitational potential energy is gradually transformed into kinetic energy until the moment when the ball makes a basket.

Explanation of Solution

Initially, the basketball has gravitational potential energy and kinetic energy. Then, kinetic energy is transferred to him through the work that the athlete’s arm does on it. At that moment its kinetic energy, as it ascends in a parabolic trajectory, is gradually transformed into gravitational potential energy. The ball at the highest point of the trajectory has zero kinetic energy and maximum gravitational potential energy. Then as it descends, its gravitational potential energy is transformed into kinetic energy. At the time of making a basket, the ball has both kinetic energy and gravitational potential energy.

Chapter 6 Solutions

Physics: Principles with Applications

Ch. 6 - A hill has a height h. A child on a sled (total...Ch. 6 - Analyze the motion of a simple swinging pendulum...Ch. 6 - In Fig. 6-31, water balloons are tossed from the...Ch. 6 - What happens to the gravitational potential energy...Ch. 6 - Experienced hikers prefer to step over a fallen...Ch. 6 - Prob. 16QCh. 6 - The energy transformations in pole vaulting and...Ch. 6 - Prob. 18QCh. 6 - 17. Two identical arrows, one with twice the speed...Ch. 6 - Prob. 20QCh. 6 - Prob. 21QCh. 6 - Describe the energy transformations that take...Ch. 6 - Prob. 23QCh. 6 - Prob. 24QCh. 6 - Prob. 25QCh. 6 - A 75.0-kg firefighter climbs a flight of stairs...Ch. 6 - The head of a hammer with a mass of 1.2 kg is...Ch. 6 - How much work did the movers do (horizontally)...Ch. 6 - A 1200-N crate rests on the floor. How much work...Ch. 6 - What is the minimum work needed to push a 950-kg...Ch. 6 - Estimate the work you do to mow a lawn 10 m by 20...Ch. 6 - In a certain library the first shelf is 15.0 cm...Ch. 6 - A lever such as that shown in Fig. 6-35 can be...Ch. 6 - A box of mass 4.0 kg is accelerated from rest by a...Ch. 6 - A 380-kg piano slides 2.9 m down a 25° incline and...Ch. 6 - Recall from Chapter 4, Example 4-14, that you can...Ch. 6 - A grocery cart with mass of 16 kg is being pushed...Ch. 6 - The force on a particle, acting along the x axis,...Ch. 6 - A 17,000-kg jet takes off from an aircraft carrier...Ch. 6 - At room temperature, an oxygen molecule, with mass...Ch. 6 - (a) If the kinetic energy of a particle is...Ch. 6 - How much work is required to stop an electron...Ch. 6 - How much work must be done to stop a 925-kg car...Ch. 6 - Prob. 19PCh. 6 - A baseball (m = 145 g) traveling 32 m/s moves a...Ch. 6 - Prob. 21PCh. 6 - Prob. 22PCh. 6 - Prob. 23PCh. 6 - 24. (Ill) One car has twice the mass of a second...Ch. 6 - 25. (Ill) A 265-kg load is lifted 18.0 m...Ch. 6 - 26. (I) By how much does the gravitational...Ch. 6 - A spring has a spring constant k of 88.0 N/m. How...Ch. 6 - Prob. 28PCh. 6 - 29. (II) A 66.5-kg hiker starts at an elevation of...Ch. 6 - Prob. 30PCh. 6 - A novice skier starting from rest, slides down an...Ch. 6 - 32. (I) Jane, looking for Tarzan, is running at...Ch. 6 - A sled is initially given a shove up a...Ch. 6 - Prob. 34PCh. 6 - 35. (II) A spring with k=83 N/m hangs vertically...Ch. 6 - Prob. 36PCh. 6 - Prob. 37PCh. 6 - Prob. 38PCh. 6 - Prob. 39PCh. 6 - Prob. 40PCh. 6 - Prob. 41PCh. 6 - 42. (II) What should be the spring constant k of a...Ch. 6 - 43. (Ill) An engineer is designing a spring to be...Ch. 6 - Prob. 44PCh. 6 - 45. (III) A cyclist intends to cycle up a 7.50°...Ch. 6 - Prob. 46PCh. 6 - Prob. 47PCh. 6 - Prob. 48PCh. 6 - Prob. 49PCh. 6 - Prob. 50PCh. 6 - Prob. 51PCh. 6 - 52. (II) You drop a ball from a height of 2.0 m,...Ch. 6 - 53. (II) A 66-kg skier starts from rest at the top...Ch. 6 - 54. (II) A projectile is fired at an upward angle...Ch. 6 - 55. (II) The Lunar Module could make a safe...Ch. 6 - 56. (III) Early test flights for the space shuttle...Ch. 6 - How long will It take a 2750-W motor to lift a...Ch. 6 - 58. (I) (a) Show that one British horsepower (550...Ch. 6 - An 85-kg football player traveling 5.0 m/s is...Ch. 6 - Prob. 60PCh. 6 - Prob. 61PCh. 6 - A shot-putter accelerates a 7.3-kg shot from rest...Ch. 6 - Prob. 63PCh. 6 - 64. (II) How much work can a 2.0-hp motor do in...Ch. 6 - Prob. 65PCh. 6 - Prob. 66PCh. 6 - Prob. 67PCh. 6 - Prob. 68PCh. 6 - Prob. 69PCh. 6 - 70. (II) What minimum horsepower must a motor have...Ch. 6 - Prob. 71PCh. 6 - Prob. 72GPCh. 6 - Prob. 73GPCh. 6 - Prob. 74GPCh. 6 - Prob. 75GPCh. 6 - Prob. 76GPCh. 6 - Prob. 77GPCh. 6 - Prob. 78GPCh. 6 - Prob. 79GPCh. 6 - Prob. 80GPCh. 6 - Prob. 81GPCh. 6 - Prob. 82GPCh. 6 - Prob. 83GPCh. 6 - Prob. 84GPCh. 6 - Prob. 85GPCh. 6 - Prob. 86GPCh. 6 - Prob. 87GPCh. 6 - Prob. 88GPCh. 6 - Prob. 89GPCh. 6 - Prob. 90GPCh. 6 - Prob. 91GPCh. 6 - Prob. 92GPCh. 6 - Prob. 93GPCh. 6 - Prob. 94GP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Kinetic Energy and Potential Energy; Author: Professor Dave explains;https://www.youtube.com/watch?v=g7u6pIfUVy4;License: Standard YouTube License, CC-BY