ORG.CHEMISTRY W/ACCESS+MODEL KIT PKG
ORG.CHEMISTRY W/ACCESS+MODEL KIT PKG
5th Edition
ISBN: 9781260701128
Author: SMITH
Publisher: MCG
bartleby

Concept explainers

Question
Book Icon
Chapter 6, Problem 6.40P
Interpretation Introduction

(a)

Interpretation: The conformation which is present in higher concentration when R=CH2CH3 is to be identified.

Concept introduction: The change in Gibbs free energy is represented by ΔG°. It is a state function. The value of ΔG° depends on Keq. The free energy change is calculated as,

ΔG°=2.303RTlogKeq

If the ΔG° is greater than zero and Keq is smaller than one, then the formation of starting material is favored at equilibrium. However, if the ΔG° is smaller than zero and Keq is greater than one, the formation of product is favored at equilibrium.

Expert Solution
Check Mark

Answer to Problem 6.40P

The equatorial conformation is present in higher concentration in the given compound.

Explanation of Solution

Given

The value of Keq is 23 when R=CH2CH3.

The equilibrium reaction of monosubstituted cyclohexane is shown below.

ORG.CHEMISTRY W/ACCESS+MODEL KIT PKG, Chapter 6, Problem 6.40P

Figure 1

The value of Keq is 23 when R=CH2CH3. The value of Keq is greater than 1. It implies that the concentration of the starting material is comparatively lower than that of the concentration of product. The formation of products is favored at equilibrium. Therefore, the equatorial conformation is present in higher concentration in the given compound.

Conclusion

The equatorial conformation is present in higher concentration in the given compound.

Interpretation Introduction

(b)

Interpretation: The R group which shows the higher percentage of equatorial conformation at equilibrium is to be identified.

Concept introduction: The change in Gibbs free energy is represented by ΔG°. It is a state function. The value of ΔG° depends on Keq. The free energy change is calculated as,

ΔG°=2.303RTlogKeq

If the ΔG° is greater than zero and Keq is smaller than one, then the formation of starting material is favored at equilibrium. However, if the ΔG° is smaller than zero and Keq is greater than one, the formation of product is favored at equilibrium.

Expert Solution
Check Mark

Answer to Problem 6.40P

The R group that shows the higher percentage of equatorial conformation at equilibrium is R=C(CH3)3.

Explanation of Solution

The values of Keq are 23 and 4000.

The both given values are greater than 1, which indicates that in both the cases, the formation of the product is favored at equilibrium. The equilibrium constant (Keq) is higher for R=C(CH3)3 than that of R=CH2CH3.

If the Keq value is smaller than one, then the formation of starting material is favored at equilibrium. However, if the Keq value is greater than one, the formation of product is favored at equilibrium.

Therefore, the R group that shows the higher percentage of equatorial conformation at equilibrium is to R=C(CH3)3.

Conclusion

The R group that shows the higher percentage of equatorial conformation at equilibrium is to R=C(CH3)3.

Interpretation Introduction

(c)

Interpretation: The R group which shows the higher percentage of axial conformation at equilibrium is to be identified.

Concept introduction: The change in Gibbs free energy is represented by ΔG°. It is a state function. The value of ΔG° depends on Keq. The free energy change is calculated as,

ΔG°=2.303RTlogKeq

If the ΔG° is greater than zero and Keq is smaller than one, then the formation of starting material is favored at equilibrium. However, if the ΔG° is smaller than zero and Keq is greater than one, the formation of product is favored at equilibrium.

Expert Solution
Check Mark

Answer to Problem 6.40P

The R group that shows the higher percentage of axial conformation at equilibrium is R=CH2CH3.

Explanation of Solution

The values of Keq are 23 and 4000.

The equilibrium constant (Keq) is higher for R=C(CH3)3 than that of R=CH2CH3. The given both values are greater than 1, which indicates that in both cases the formation of the product is favored at equilibrium. However, the ethyl group experiences less 1,3 diaxial interactions due to less value of Keq.

Therefore, the R group that shows the higher percentage of axial conformation at equilibrium is R=CH2CH3.

Conclusion

The R group that shows the higher percentage of axial conformation at equilibrium is to R=CH2CH3.

Interpretation Introduction

(d)

Interpretation: The R group for which ΔG° is more negative to be identified.

Concept introduction: The change in Gibbs free energy is represented by ΔG°. It is a state function. The value of ΔG° depends on Keq. The free energy change is calculated as,

ΔG°=2.303RTlogKeq

If the ΔG° is greater than zero and Keq is smaller than one, then the formation of starting material is favored at equilibrium. However, if the ΔG° is smaller than zero and Keq is greater than one, the formation of product is favored at equilibrium.

Expert Solution
Check Mark

Answer to Problem 6.40P

The value of ΔGo is more negative for R=C(CH3)3.

Explanation of Solution

Given

The values of Keq are 23 and 4000.

The relationship between ΔG° and Keq is expressed as,

ΔG°=2.303RTlogKeq

As the value of Keq increases, the value of ΔGo become more and more negative. The value of Keq is more for R=C(CH3)3. Hence, the value of ΔGo is more negative for R=C(CH3)3.

Conclusion

The value of ΔGo is more negative for R=C(CH3)3.

Interpretation Introduction

(e)

Interpretation: The explanation corresponding to the relation of size of R to the amount of axial and equatorial conformation at equilibrium is to be stated.

Concept introduction: The change in Gibbs free energy is represented by ΔG°. It is a state function. The value of ΔG° depends on Keq. The free energy change is calculated as,

ΔG°=2.303RTlogKeq

If the ΔG° is greater than zero and Keq is smaller than one, then the formation of starting material is favored at equilibrium. However, if the ΔG° is smaller than zero and Keq is greater than one, the formation of product is favored at equilibrium.

Expert Solution
Check Mark

Answer to Problem 6.40P

The large size of R group favors the formation of product that has equatorial conformation at equilibrium whereas the small size of R group favors the formation of reactant that has axial conformationat equilibrium.

Explanation of Solution

The value Keq for R=C(CH3)3 and R=CH2CH3 is 4000 and 23 respectively. The formation of product that has equatorial conformation is more favored as the value of Keq increases. The large size of R group favors formation of product that has equatorial conformation at equilibrium whereas the small size of R group favors formation of reactant that has axial conformationat equilibrium.

Conclusion

The large size of R group favors formation of product that has equatorial conformation at equilibrium whereas the small size of R group favors formation of reactant that has axial conformationat equilibrium.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
As we learned in Chapter 4, monosubstituted cyclohexanes exist as an equilibrium mixture of two conformations having either an axial or equatorial substituent. When R = CH2CH3, Keq for this process is 23.When R = C(CH3)3, Keq for this process is 4000. a.When R = CH2CH3, which conformation is present in higher concentration? b.Which R shows the higher percentage of equatorial conformation at equilibrium? c. Which R shows the higher percentage of axial conformation at equilibrium? d. For which R is ΔGo more negative? e.How is the size of R related to the amount of axial and equatorial conformations at equilibrium?
3,4-Dimethylpent-1-ene has the formula CH2“CH¬CH(CH3)¬CH(CH3)2. When pure (R)-3,4-dimethylpent-1-ene is treated with hydrogen over a platinum catalyst, the product is (S)-2,3-dimethylpentane. The reactant is named (R), but the product is named (S). Does this name change imply a change in the spatial arrangement of the groups around the chiral center? So why does the name switch from (R) to (S)?
Name the 1 isomer of C7H16 that contains 3 methyl branches on the parent chain.

Chapter 6 Solutions

ORG.CHEMISTRY W/ACCESS+MODEL KIT PKG

Ch. 6 - Given each of the following values, is the...Ch. 6 - The equilibrium constant for the conversion of the...Ch. 6 - Prob. 6.13PCh. 6 - For a reaction with H=40kJ/mol, decide which of...Ch. 6 - For a reaction with H=20kJ/mol, decide which of...Ch. 6 - Draw an energy diagram for a reaction in which the...Ch. 6 - Prob. 6.17PCh. 6 - Prob. 6.18PCh. 6 - Problem 6.19 Consider the following energy...Ch. 6 - Draw an energy diagram for a two-step reaction,...Ch. 6 - Which value if any corresponds to a faster...Ch. 6 - Prob. 6.22PCh. 6 - Problem 6.23 For each rate equation, what effect...Ch. 6 - Prob. 6.24PCh. 6 - Identify the catalyst in each equation. a....Ch. 6 - Draw the products of homolysis or heterolysis of...Ch. 6 - Explain why the bond dissociation energy for bond...Ch. 6 - Classify each transformation as substitution,...Ch. 6 - Prob. 6.29PCh. 6 - 6.30 Draw the products of each reaction by...Ch. 6 - 6.31 (a) Add curved arrows for each step to show...Ch. 6 - Prob. 6.32PCh. 6 - Prob. 6.33PCh. 6 - Prob. 6.34PCh. 6 - Calculate H for each reaction. a HO+CH4CH3+H2O b...Ch. 6 - Homolysis of the indicated CH bond in propene...Ch. 6 - Prob. 6.37PCh. 6 - Prob. 6.38PCh. 6 - 6.39. a. Which value corresponds to a negative...Ch. 6 - Prob. 6.40PCh. 6 - For which of the following reaction is S a...Ch. 6 - Prob. 6.42PCh. 6 - Prob. 6.43PCh. 6 - 6.44 Consider the following reaction: . Use curved...Ch. 6 - Prob. 6.45PCh. 6 - Draw an energy diagram for the Bronsted-Lowry...Ch. 6 - Prob. 6.47PCh. 6 - Indicate which factors affect the rate of a...Ch. 6 - Prob. 6.49PCh. 6 - 6.50 The conversion of acetyl chloride to methyl...Ch. 6 - Prob. 6.51PCh. 6 - Prob. 6.52PCh. 6 - The conversion of (CH3)3Cl to (CH3)2C=CH2 can...Ch. 6 - 6.54 Explain why is more acidic than , even...Ch. 6 - Prob. 6.55PCh. 6 - Prob. 6.56PCh. 6 - Prob. 6.57PCh. 6 - Although Keq of equation 1 in problem 6.57 does...Ch. 6 - Prob. 6.59P
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
Organic And Biological Chemistry
Chemistry
ISBN:9781305081079
Author:STOKER, H. Stephen (howard Stephen)
Publisher:Cengage Learning,
Text book image
General, Organic, and Biological Chemistry
Chemistry
ISBN:9781285853918
Author:H. Stephen Stoker
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9781305080485
Author:John E. McMurry
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning