Foundations of Materials Science and Engineering
Foundations of Materials Science and Engineering
6th Edition
ISBN: 9781259696558
Author: SMITH
Publisher: MCG
bartleby

Videos

Textbook Question
Book Icon
Chapter 7.10, Problem 27AAP

Using the equation K IC = σ f π a , plot the fracture stress (MPa) for aluminum alloy 7075-T651 versus surface crack size a (mm) for a values from 0.2 mm to 2.0 mm. What is the minimum size surface crack that will cause catastrophic failure?

Blurred answer
Students have asked these similar questions
What is the maximum internal flaw size allowable for a 304 Stainless steel alloy that is loaded to a stress two thirds of its yield strength (205 MPa) and it has a fracture toughness of 95 MPa.m0.5. Assume a value of 1.3 for Y
A tie rod made of quenched and tempered 4340 steel is used as a critical linkage in an industrial apparatus. The rod is subjected to an alternating cyclic tensile/compressive stress from 550 MPa to -550 MPa. An inspection of the rod revealed a 3.5 mm deep edge crack on the surface of the rod. Please answer the following question for the rod given the properties in the table and curve below and fracture toughness of 55 MPa√m. (NOTE: Y=1.12 for edge crack and use “a” not “2a” for the length of the crack)  1. At the given crack size and tensile loading would the rod undergo instantaneous fast fracture, assuming plane strain conditions? Show calculations to back up your conclusions.
A tie rod made of quenched and tempered 4340 steel is used as a critical linkage in an industrial apparatus. The rod is subjected to an alternating cyclic tensile/compressive stress from 550 MPa to -550 MPa. An inspection of the rod revealed a 3.5 mm deep edge crack on the surface of the rod. Please answer the following question for the rod given the properties in the table and curve below and fracture toughness of 55 MPa√m. (NOTE: Y=1.12 for edge crack and use “a” not “2a” for the length of the crack)  1. What is the minimum crack size that would cause instantaneous fast fracture at the current maximum axial tensile loading, assuming plane strain conditions apply? If the resolution limit of the flaw detection apparatus were 1.5 mm, would this flaw be subject to detection? Show calculations to back up your conclusions.

Chapter 7 Solutions

Foundations of Materials Science and Engineering

Ch. 7.10 - Describe a metal fatigue failure.Ch. 7.10 - What two distinct types of surface areas are...Ch. 7.10 - Prob. 13KCPCh. 7.10 - Prob. 14KCPCh. 7.10 - Prob. 15KCPCh. 7.10 - Describe the four basic structural changes that...Ch. 7.10 - Describe the four major factors that affect the...Ch. 7.10 - Prob. 18KCPCh. 7.10 - Prob. 19KCPCh. 7.10 - Prob. 20KCPCh. 7.10 - Prob. 21KCPCh. 7.10 - Determine the critical crack length for a through...Ch. 7.10 - Determine the critical crack length for a through...Ch. 7.10 - The critical stress intensity (KIC) for a material...Ch. 7.10 - What is the largest size (in mm) of internal...Ch. 7.10 - A Ti-6Al-4V alloy plate contains an internal...Ch. 7.10 - Using the equation KIC=fa, plot the fracture...Ch. 7.10 - (a) Determine the critical crack length (mm) for a...Ch. 7.10 - A fatigue test is made with a maximum stress of 25...Ch. 7.10 - A fatigue test is made with a mean stress of...Ch. 7.10 - A large, flat plate is subjected to...Ch. 7.10 - Prob. 32AAPCh. 7.10 - Refer to Problem 7.31: Compute the final critical...Ch. 7.10 - Prob. 34AAPCh. 7.10 - Prob. 35AAPCh. 7.10 - Equiaxed MAR-M 247 alloy (Fig. 7.31) is used to...Ch. 7.10 - Prob. 37AAPCh. 7.10 - If DS CM 247 LC alloy (middle graph of Fig. 7.31)...Ch. 7.10 - Prob. 39AAPCh. 7.10 - Prob. 40AAPCh. 7.10 - Prob. 41SEPCh. 7.10 - Prob. 42SEPCh. 7.10 - A Charpy V-notch specimen is tested by the...Ch. 7.10 - Prob. 44SEPCh. 7.10 - Prob. 45SEPCh. 7.10 - Prob. 46SEPCh. 7.10 - Prob. 47SEPCh. 7.10 - Prob. 48SEPCh. 7.10 - Prob. 49SEPCh. 7.10 - Prob. 50SEPCh. 7.10 - While driving your car, a small pebble hits your...Ch. 7.10 - Prob. 52SEPCh. 7.10 - Prob. 53SEPCh. 7.10 - Prob. 54SEPCh. 7.10 - Prob. 56SEPCh. 7.10 - Prob. 57SEPCh. 7.10 - Prob. 58SEPCh. 7.10 - Prob. 59SEPCh. 7.10 - The components in Figure P7.60 are high-strength...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Understanding Failure Theories (Tresca, von Mises etc...); Author: The Efficient Engineer;https://www.youtube.com/watch?v=xkbQnBAOFEg;License: Standard youtube license