Owlv2 With Labskills 24-months Printed Access Card For Gilbert/martin's Experimental Organic Chemistry: A Miniscale & Microscale Approach, 6th
Owlv2 With Labskills 24-months Printed Access Card For Gilbert/martin's Experimental Organic Chemistry: A Miniscale & Microscale Approach, 6th
6th Edition
ISBN: 9781305387645
Author: Gilbert, John C.; Martin, Stephen F.
Publisher: Cengage Learning
Question
Book Icon
Chapter 8.2, Problem 4E
Interpretation Introduction

Interpretation:Thewave number for C-C stretching vibration needs to be determined, given that vibration for C=C is 1640 cm-1.The wave number for carbon -carbon triple bond needs to be determined wherein the k is appropriate multiple of carbon-carbon double bond.

Concept introduction:

There is large variance in force constant with small differences in bond length. The wavenumber is inversely proportional to square root of reduced mass. Hence, when there is increase in reduced mass, there is decrease in wave numbers.

Expert Solution & Answer
Check Mark

Answer to Problem 4E

The wave number for C-C bond is 1159.6 cm-1 and stretching frequency of C-C triple bond is 2009 cm-1.

Explanation of Solution

The relation between wave number and reduced mass is depicted in equation

  ν¯=12πckm*...............(1)

Where

  ν¯ = wave numberk = force constantm* = reduced massc = speed of light

Computing for reduced mass, the equation is

  m* = mc x mcmc + mc................(2)

Where

  mc = atomic mass of carbon

Substituting atomic mass of carbon as 12 and

  m* = 12g x 12g12g + 12 g=144g24g=6g

From equation (1), all the factors are constant except reduced mass and the reduced mass is inversely proportional to square root of reduced mass.

  ν¯CCν¯C=C=k (CC)m* (CC)k (C=C)m* (CC).....................(3)

Where,

  ν¯CC stands for wave number for single bondsν¯C=C stands for  wave number for double bonds

But given that k(C=C)=2k(CC) and ν¯C=C=1640 cm1

   ν ¯ CC ν ¯ C=C= k (CC) m * (CC) k (C=C) m * (CC) ν ¯ CC1640cm 1= k (CC) m * (CC) 2 k (CC) m * (CC)   ν ¯ CC1640cm 1= 0.707cm1ν¯CC=1159.65cm1

It is known that force constant for C-C triple bond is three times that of C-C single bond.

  k(C=C)=2k(CC)k(CC)=k (C=C)2

Hence, computing for C-C triple bonds.

  k(CC)=3k(CC)=3k(C=C)2

  k(CC)=3k(C=C)2

For triple bond, the equation is

   ν ¯ CC ν ¯ C=C= k (CC) m * (CC) k (C=C) m * (CC) = 3 k (C=C) m * (CC) 2 k (C=C) m * (CC) ν ¯ CC1640cm 132=1.224ν¯CC = 2008.6cm1

Hence, the stretching frequency of C-C triple bond is 2009cm-1.

Conclusion

Thus, the wave number for C-C bond is 1159.6 cm-1 and stretching frequency of C-C triple bond is 2009 cm-1.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Calculate the percentage difference in the fundamental vibrational wavenumbers of 23Na35Cl and 23Na37Cl on the assumption that their force constants are the same. The mass of 23Na is 22.9898mu.
The wavenumber of the fundamental vibrational transition of 35Cl2 is 564.9 cm−1. Calculate the force constant of the bond.
This question pertains to vibrational spectroscopy. Which of the following molecules would have a pure vibrational spectrum and why? HCl, CO2, N2, H2O What is the selection rule for vibrational spectroscopy? The wavenumber of the fundamental vibrational transition of Cl2 is 565 cm-1. Calculate the force constant of the bond.
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Principles of Modern Chemistry
    Chemistry
    ISBN:9781305079113
    Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
    Publisher:Cengage Learning
    Text book image
    Principles of Instrumental Analysis
    Chemistry
    ISBN:9781305577213
    Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
    Publisher:Cengage Learning
    Text book image
    Physical Chemistry
    Chemistry
    ISBN:9781133958437
    Author:Ball, David W. (david Warren), BAER, Tomas
    Publisher:Wadsworth Cengage Learning,
Text book image
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,