Organic Chemistry
Organic Chemistry
3rd Edition
ISBN: 9781119338352
Author: Klein
Publisher: WILEY
Question
Book Icon
Chapter 9, Problem 48PP

(a)

Interpretation Introduction

Interpretation:

The different reagents used to accomplish the given transformation should be draw and identified.

Concept Introduction:

Soda amide: The strong base of NaNH2/NH3 will deprotonate alkynes, alcohols and other organic functional groups with acidic protons such as asters and ketones. It is also a very strong nucleophile. It is a strong base and excellent nucleophile. It’s used deprotonated of weak acids and also for elimination reaction.

Markovnikov’s Rule: The unsymmetrical alkene in a chemical compound reacts with hydrogen halide in a way, where halide ions attacks and bond to the more substitution position of carbon-carbon double bond.

Hydrogen reduction reaction: The alkenes or alkynes can be reduced to alkanes with H2 in the presence of metal catalyst (Pd) . The new C-H σ bonds are formed simultaneously from H atoms absorbed into the metal surface.

Birch Reduction: The conjugated alkynes and benzenes in the presence of sodium metal in liquid ammonia and alkyne produced a non-conjugated diene system.

The alkyne involves sodium (Na)/NH3 . This end up reducing to alkyne to give the trans (E) alkene.

Hydrogenation:  The hydrogenation is a reduction reaction which results in an addition of hydrogen. Several organic compounds (alkenes, alkynes) is hydrogenated, it becomes more saturated.

Acid Catalyzed Hydration Reaction: The reaction involves breaking of phi bonds between carbon-carbon multiple bonds and addition of alcohol to more substituted position of carbon in the molecule.

(b)

Interpretation Introduction

Interpretation:

The different reagents used to accomplish the given transformation should be draw and identified.

Concept Introduction:

Soda amide: The strong base of NaNH2/NH3 will deprotonate alkynes, alcohols and other organic functional groups with acidic protons such as asters and ketones. It is also a very strong nucleophile. It is a strong base and excellent nucleophile. It’s used deprotonated of weak acids and also for elimination reaction.

Markovnikov’s Rule: The unsymmetrical alkene in a chemical compound reacts with hydrogen halide in a way, where halide ions attacks and bond to the more substitution position of carbon-carbon double bond.

Hydrogen reduction reaction: The alkenes or alkynes can be reduced to alkanes with H2 in the presence of metal catalyst (Pd) . The new C-H σ bonds are formed simultaneously from H atoms absorbed into the metal surface.

Birch Reduction: The conjugated alkynes and benzenes in the presence of sodium metal in liquid ammonia and alkyne produced a non-conjugated diene system.

The alkyne involves sodium (Na)/NH3 . This end up reducing to alkyne to give the trans (E) alkene.

Hydrogenation:  The hydrogenation is a reduction reaction which results in an addition of hydrogen. Several organic compounds (alkenes, alkynes) is hydrogenated, it becomes more saturated.

Acid Catalyzed Hydration Reaction: The reaction involves breaking of phi bonds between carbon-carbon multiple bonds and addition of alcohol to more substituted position of carbon in the molecule.

(c)

Interpretation Introduction

Interpretation:

The different reagents used to accomplish the given transformation should be draw and identified.

Concept Introduction:

Soda amide: The strong base of NaNH2/NH3 will deprotonate alkynes, alcohols and other organic functional groups with acidic protons such as asters and ketones. It is also a very strong nucleophile. It is a strong base and excellent nucleophile. It’s used deprotonated of weak acids and also for elimination reaction.

Markovnikov’s Rule: The unsymmetrical alkene in a chemical compound reacts with hydrogen halide in a way, where halide ions attacks and bond to the more substitution position of carbon-carbon double bond.

Hydrogen reduction reaction: The alkenes or alkynes can be reduced to alkanes with H2 in the presence of metal catalyst (Pd) . The new C-H σ bonds are formed simultaneously from H atoms absorbed into the metal surface.

Birch Reduction: The conjugated alkynes and benzenes in the presence of sodium metal in liquid ammonia and alkyne produced a non-conjugated diene system.

The alkyne involves sodium (Na)/NH3 . This end up reducing to alkyne to give the trans (E) alkene.

Hydrogenation:  The hydrogenation is a reduction reaction which results in an addition of hydrogen. Several organic compounds (alkenes, alkynes) is hydrogenated, it becomes more saturated.

Acid Catalyzed Hydration Reaction: The reaction involves breaking of phi bonds between carbon-carbon multiple bonds and addition of alcohol to more substituted position of carbon in the molecule.

(d)

Interpretation Introduction

Interpretation:

The different reagents used to accomplish the given transformation should be draw and identified.

Concept Introduction:

Soda amide: The strong base of NaNH2/NH3 will deprotonate alkynes, alcohols and other organic functional groups with acidic protons such as asters and ketones. It is also a very strong nucleophile. It is a strong base and excellent nucleophile. It’s used deprotonated of weak acids and also for elimination reaction.

Markovnikov’s Rule: The unsymmetrical alkene in a chemical compound reacts with hydrogen halide in a way, where halide ions attacks and bond to the more substitution position of carbon-carbon double bond.

Hydrogen reduction reaction: The alkenes or alkynes can be reduced to alkanes with H2 in the presence of metal catalyst (Pd) . The new C-H σ bonds are formed simultaneously from H atoms absorbed into the metal surface.

Birch Reduction: The conjugated alkynes and benzenes in the presence of sodium metal in liquid ammonia and alkyne produced a non-conjugated diene system.

The alkyne involves sodium (Na)/NH3 . This end up reducing to alkyne to give the trans (E) alkene.

Hydrogenation:  The hydrogenation is a reduction reaction which results in an addition of hydrogen. Several organic compounds (alkenes, alkynes) is hydrogenated, it becomes more saturated.

Acid Catalyzed Hydration Reaction: The reaction involves breaking of phi bonds between carbon-carbon multiple bonds and addition of alcohol to more substituted position of carbon in the molecule.

(e)

Interpretation Introduction

Interpretation:

The different reagents used to accomplish the given transformation should be draw and identified.

Concept Introduction:

Soda amide: The strong base of NaNH2/NH3 will deprotonate alkynes, alcohols and other organic functional groups with acidic protons such as asters and ketones. It is also a very strong nucleophile. It is a strong base and excellent nucleophile. It’s used deprotonated of weak acids and also for elimination reaction.

Markovnikov’s Rule: The unsymmetrical alkene in a chemical compound reacts with hydrogen halide in a way, where halide ions attacks and bond to the more substitution position of carbon-carbon double bond.

Hydrogen reduction reaction: The alkenes or alkynes can be reduced to alkanes with H2 in the presence of metal catalyst (Pd) . The new C-H σ bonds are formed simultaneously from H atoms absorbed into the metal surface.

Birch Reduction: The conjugated alkynes and benzenes in the presence of sodium metal in liquid ammonia and alkyne produced a non-conjugated diene system.

The alkyne involves sodium (Na)/NH3 . This end up reducing to alkyne to give the trans (E) alkene.

Hydrogenation:  The hydrogenation is a reduction reaction which results in an addition of hydrogen. Several organic compounds (alkenes, alkynes) is hydrogenated, it becomes more saturated.

Acid Catalyzed Hydration Reaction: The reaction involves breaking of phi bonds between carbon-carbon multiple bonds and addition of alcohol to more substituted position of carbon in the molecule.

(f)

Interpretation Introduction

Interpretation:

The different reagents used to accomplish the given transformation should be draw and identified.

Concept Introduction:

Soda amide: The strong base of NaNH2/NH3 will deprotonate alkynes, alcohols and other organic functional groups with acidic protons such as asters and ketones. It is also a very strong nucleophile. It is a strong base and excellent nucleophile. It’s used deprotonated of weak acids and also for elimination reaction.

Markovnikov’s Rule: The unsymmetrical alkene in a chemical compound reacts with hydrogen halide in a way, where halide ions attacks and bond to the more substitution position of carbon-carbon double bond.

Hydrogen reduction reaction: The alkenes or alkynes can be reduced to alkanes with H2 in the presence of metal catalyst (Pd) . The new C-H σ bonds are formed simultaneously from H atoms absorbed into the metal surface.

Birch Reduction: The conjugated alkynes and benzenes in the presence of sodium metal in liquid ammonia and alkyne produced a non-conjugated diene system.

The alkyne involves sodium (Na)/NH3 . This end up reducing to alkyne to give the trans (E) alkene.

Hydrogenation:  The hydrogenation is a reduction reaction which results in an addition of hydrogen. Several organic compounds (alkenes, alkynes) is hydrogenated, it becomes more saturated.

Acid Catalyzed Hydration Reaction: The reaction involves breaking of phi bonds between carbon-carbon multiple bonds and addition of alcohol to more substituted position of carbon in the molecule.

Blurred answer

Chapter 9 Solutions

Organic Chemistry

Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY