THINKING LIKE AN ENGINEER W/ACCESS
THINKING LIKE AN ENGINEER W/ACCESS
17th Edition
ISBN: 9781323522127
Author: STEPHAN
Publisher: PEARSON C
bartleby

Videos

Textbook Question
Book Icon
Chapter 9, Problem 4ICA

Calculate the numerical value of each of the dimensionless parameters listed in the table. Be sure to check that the ratio is actually dimensionless after you insert the values.

  Situation Name Expression Value
(a)     Air over a flat plate Nusselt number, Nu h L k  
(b)    Wind making a wire “sing” Strouhal number, St ω D w i r e V a  
Property Symbol Units Value
Heat transfer coefficient h W/(m2 oC) 20
Thermal conductivity k W/(m K) 0.025
Plate length L ft 2
Air speed va mph 60
Oscillation frequency ω Hz or cycles/s 140
Wire diameter Dwire mm 20
Blurred answer
Students have asked these similar questions
Consider the following equation. All three of the terms in parentheses are dimensionless groups. Because kC is difficult to determine directly, the other variables are measured and kC is calculated from the given equation. What is the estimated value of kC? What are the units of kC? Show your work. The following values were measured: D = 8.0 mm, DAB = 0.475 cm2/s, μ = 1.12 x 10–3 N-s/m2, ρ = 1.00 x 10–3 g/cm3, v = 15.0 m/s. Note: Given Equation attached below
The power P required to drive a propeller is known to depend on the diameter of the propeller D, the density of fluid ρ, the speed of sound a, the angular velocity of the propeller ω, the freestream velocity V , and the viscosity of the fluid µ. (a) How many dimensionless groups characterize this problem? (b) If the effects of viscosity are neglected, and if the speed of sound is not an important variable, express the relationship between power and the other variables in nondimensional form. (c) A one-half scale model of a propeller is built, and it uses Pm horsepower when running at a speed ωm. If the full-scale propeller in the same fluid runs at ωm/2, what is its power consumption in terms of Pm if the functional dependence found in part (b) holds? What freestream velocity should be used for the model test?  
When a capillary tube of small diameter D is inserted into a container of liquid, the liquid rises to height h inside the tube (Fig.). h is a function of liquid density ? , tube diameter D, gravitational constant g, contact angle ?, and the surface tension ?s of the liquid. (a) Generate a dimensionless relationship for h as a function of the given parameters. (b) Compare your result to the exact analytical equation for h. Are your dimensional analysis results consistent with the exact equation? Discuss.

Chapter 9 Solutions

THINKING LIKE AN ENGINEER W/ACCESS

Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Unit Conversion the Easy Way (Dimensional Analysis); Author: ketzbook;https://www.youtube.com/watch?v=HRe1mire4Gc;License: Standard YouTube License, CC-BY