McDougal Littell Jurgensen Geometry: Student Edition Geometry - 5th Edition - by Ray C. Jurgensen, Richard G. Brown, John W. Jurgensen - ISBN 9780395977279
Buy this textbookBuy

McDougal Littell Jurgensen Geometry: St...
5th Edition
Ray C. Jurgensen, Richard G. Brown, John W. Jurgensen
Publisher: Houghton Mifflin Company College Division
ISBN: 9780395977279

FREE Answers for McDougal Littell Jurgensen Geometry: Student Edition Geometry

Browse All Chapters of This Textbook

Chapter 2.4 - Special Pairs Of AnglesChapter 2.5 - Perpendicular LinesChapter 2.6 - Planning A ProofChapter 3 - Parallel Lines And PlanesChapter 3.1 - DefinitionsChapter 3.2 - Properties Of Parallel LinesChapter 3.3 - Proving Lines ParallelChapter 3.4 - Angles Of A TriangleChapter 3.5 - Angles Of A PolygomChapter 3.6 - Inductive ReasoningChapter 4 - Congruent TrianglesChapter 4.1 - Congruent FiguresChapter 4.2 - Some Ways To Prove Triangles CongruentChapter 4.3 - Using Congruent TrianglesChapter 4.4 - The Isosceles Triangle TheoremsChapter 4.5 - Other Methods Of Proving Triangles CongruentChapter 4.6 - Using More Than One Pair Of Congruent TrianglesChapter 4.7 - Medians, Altitudes, And Perpendicular BisectorsChapter 5 - QuadrilateralsChapter 5.1 - Properties Of ParallelogramsChapter 5.2 - Ways To Prove That Quadrilaterals Are ParallelogramsChapter 5.3 - Theorems Involving Parallel LinesChapter 5.4 - Special PrallelogramsChapter 5.5 - TrapezoidsChapter 6 - Inequalities In GeometryChapter 6.1 - InequalitiesChapter 6.2 - Inverses And ContrapositivesChapter 6.3 - Indirect ProofChapter 6.4 - Inequalities For One TriangleChapter 6.5 - Inequalities For Two TrianglesChapter 7 - Similar PolygonsChapter 7.1 - Ratio And ProportionChapter 7.2 - Properties Of ProportionsChapter 7.3 - Similar PolygonsChapter 7.4 - A Postulate For Similar TrianglesChapter 7.5 - Theorems For Similar TrianglesChapter 7.6 - Proportional LengthsChapter 8 - Right TrianglesChapter 8.1 - Similartity In Right TrianglesChapter 8.2 - The Pythagorean TheoremChapter 8.3 - The Converse Of The Pythagorean TheoremChapter 8.4 - Special Right TrianglesChapter 8.5 - The Tangent RatiosChapter 8.6 - The Sine And Cosine RatiosChapter 8.7 - Applications Of Right Triangle TrigonometryChapter 9 - CirclesChapter 9.1 - Basic TermsChapter 9.2 - TangentsChapter 9.3 - Arcs And Central AnglesChapter 9.4 - Arcs And ChordsChapter 9.5 - Inscribed AnglesChapter 9.6 - Other AnglesChapter 9.7 - Circles And Lengths Of SegmentsChapter 10 - Constructions And LociChapter 10.1 - What Construction MeansChapter 10.2 - Perpendicular And ParallelsChapter 10.3 - Concurrent LinesChapter 10.4 - CirclesChapter 10.5 - Special SegmentsChapter 10.6 - The Meaning Of LocusChapter 10.7 - Locus ProblemsChapter 10.8 - Locus And ConstructionChapter 11 - Areas Of Plane FiguresChapter 11.1 - Areas Of RectanglesChapter 11.2 - Areas Of Parallelograms, Triangles, And RhombusesChapter 11.3 - Areas Of TrapezoidsChapter 11.4 - Areas Of Regular PolygonsChapter 11.5 - Circumferences And Areas Of CirclesChapter 11.6 - Arc Lengths And Areas Of SectorsChapter 11.7 - Ratios Of AreasChapter 11.8 - Geometric ProbabilityChapter 12 - Areas And Volumes Of SolidsChapter 12.1 - PrismsChapter 12.2 - PyramidsChapter 12.3 - Cylinders And ConesChapter 12.4 - SpheresChapter 12.5 - Areas And Volumes Of Similar SolidsChapter 13 - Coordinate GeometryChapter 13.1 - The Distance FormulaChapter 13.2 - Slope Of A LineChapter 13.3 - Parallel And Perpendicular LinesChapter 13.4 - VectorsChapter 13.5 - The Midpoint FormulaChapter 13.6 - Graphing Linear EquationsChapter 13.7 - Writing Linear EquationsChapter 13.8 - Organizing Coordinate ProofsChapter 13.9 - Coordinate Geometry ProofsChapter 14 - TransformationsChapter 14.1 - Mapping And FunctionsChapter 14.2 - ReflectionsChapter 14.3 - Translations And Glide ReflectionsChapter 14.4 - RotationsChapter 14.5 - DilationsChapter 14.6 - Composites Of MappingsChapter 14.7 - Inverses And The IdentityChapter 14.8 - Symmetry In The Plane And In SpaceChapter E - Examanations

Book Details

A strong foundation

Comprehensive content and varied real-life applications give students a strong mathematical foundation. Geometry introduces students to theory and application of formal and informal reasoning, as well as to synthetic, coordinate, and transformational approaches.

Applied technology

Real-world applications and suggestions for appropriate use of technology are integrated throughout the series.