Engineering Electromagnetics
Engineering Electromagnetics
9th Edition
ISBN: 9780078028151
Author: Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher: Mcgraw-hill Education,
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 10, Problem 10.12P

In a circuit in which a sinusoidal voltage source drives its internal impedance in series with a load impedance, maximum power transfer to the load occurs when the source and load impedances form a complex conjugate pair. Suppose the source (with its internal impedance) now drives a complex load of impedance ZL = RL +XL that has been moved to the end of a lossless transmission line of length l having characteristic impedance Z0. If the source impedance is Zg = Rg+ jXg, write an equation that can be solved for the required line length, l such that the displaced load will receive the maximum power.

Blurred answer
Students have asked these similar questions
A 50Ω lossless transmission line is terminated with a load impedance valued ZL = RL + jXL.According to what is given, a) RL for Voltage Standing Wave Ratio to be 2What should be the relationship between XL and?b) If RL = 100Ω, find the value of XL.c) Find the voltage minimum point closest to the load on the line.
A lossless transmission line has 100 ? characteristic impedance. The line is terminated in a load impedance of 70-j100 ?. The maximum voltage measured on the line is 200V. Find;1. The minimum current and minimum voltage on the line2. Explain how location of voltage maximum can be determined by using load reflection coefficient from the forward and backward wave.3. Using load reflection coefficient in ii., calculate the distance from the load that produce the maximum voltage and current.
A three-phase power of 460 MW is transmitted to a substation located 500 km from the source of power. With VS=1 per unit, VR=0.9 per unit, λ =5000 km, Zc =500 V, and δ=36.878, determine a nominal voltagen level for the lossless transmission line based on Eq. (5.4.29) of the text. Using this result, find the theoretical three-phase maximum power that can be transferred by the lossless transmission line.

Chapter 10 Solutions

Engineering Electromagnetics

Ch. 10 - Two voltage waves of equal amplitude V0, which...Ch. 10 - In a circuit in which a sinusoidal voltage source...Ch. 10 - The skin effect mechanism in transmission lines is...Ch. 10 - A lossless transmission line having characteristic...Ch. 10 - Figure 10.29 See Problem 10.15. For the...Ch. 10 - A 100 lossless transmission line is connected to a...Ch. 10 - Determine the average power absorbed by each...Ch. 10 - The line shown in Figure 10.31 is lossless. Find s...Ch. 10 - A lossless transmission line is 50 cm in length...Ch. 10 - (a) Determine s on the transmission line of Figure...Ch. 10 - Prob. 10.21PCh. 10 - Prob. 10.22PCh. 10 - The normalized load on a lossless transmission...Ch. 10 - Prob. 10.24PCh. 10 - Prob. 10.25PCh. 10 - A 75 lossless line is of length 1.2 . It is...Ch. 10 - Prob. 10.27PCh. 10 - The wavelength on a certain lossless line is 10...Ch. 10 - Prob. 10.29PCh. 10 - A two-wire line constructed of lossless wire of...Ch. 10 - In order to compare the relative sharpness of the...Ch. 10 - In Figure 10.17, let ZL=250 and Z0=50. Find the...Ch. 10 - In Figure 10.17, let ZL=100+j150 and Z0=100. Find...Ch. 10 - The lossless line shown in Figure 10.35 is...Ch. 10 - Prob. 10.35PCh. 10 - The two-wire lines shown in Figure 10.36 are all...Ch. 10 - Prob. 10.37PCh. 10 - Repeat Problem 10.37, with, Z0=50 and RL=Rg=25....Ch. 10 - In the transmission line of Figure 10.20, Z0=50,...Ch. 10 - In the charged line of Figure 10.25, the...Ch. 10 - In the transmission line of Figure 10.37, the...Ch. 10 - Figure 10.38 See Problem 10.42. A simple frozen...Ch. 10 - Figure 10.39 See Problem 10.43. In Figure 10.39,...
Knowledge Booster
Background pattern image
Electrical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
Power System Analysis and Design (MindTap Course ...
Electrical Engineering
ISBN:9781305632134
Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher:Cengage Learning
Maximum Power Transfer Theorem Using Nodal Analysis & Thevenin Equivalent Circuits; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=8CA6ZNXgI-Y;License: Standard Youtube License