Engineering Electromagnetics
Engineering Electromagnetics
9th Edition
ISBN: 9780078028151
Author: Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher: Mcgraw-hill Education,
bartleby

Videos

Textbook Question
Book Icon
Chapter 10, Problem 10.8P

An absolute measure of power is the dBm scale, in which power is specified in decibels relative to one milliwatt. Specifically, P ( dBm ) = 10 log 10 [ P ( mW ) / 1 mW] . Suppose that a receiver is rated as having a sensitivity of -20 dBm, indicating the mimimum power that it must receive in order to adequately interpret the transmitted electronic data. Suppose this receiver is at the load end of a 50 Ω transmission line having 100-m length and loss rating of 0.09 dB/m. The receiver impedance is 75 Ω and so is not matched to the line. What is the minimum required input power to the line in (a) dBm. (b) mW?

Blurred answer
Students have asked these similar questions
Waveform: Triangle wave Frequency: 5000 Hz Duty Cycle: 40% Amplitude: 8 Vp   On the oscilloscope, set the timebase to 100 μs/Div.   Now run the simulation and measure the rise time and fall time of the triangle wave in V/100 μs. Are these values consistent with a 40% duty cycle? I am trying to calculate V/100us. (T2−T1) rise=32.474uS (T2−T1) fall=47.755uS Minimum Voltage (V_min): 786.026 mV = 0.786026 V Maximum Voltage (V_max): 7.206 V Slope(rise) =6.419974/32.474×10^6 = 197,579.76,V/s *1,s/100,μs =197,579.76,V/100us I am checking the answer and I am concerned for V/100us =197,579.76,V/100us  is to high?  Please help me verify the answer for V/100us is correct. (I just need the calculations from my measurments) any insight is appreciated I did not post the pics of my virtual oscilliscope.
Connect the function generator and the scope, as shown in the same example. Set the function generator as follows:   Waveform: Triangle wave Frequency: 5000 Hz Duty Cycle: 40% Amplitude: 8 Vp   On the oscilloscope, set the timebase to 100 μs/Div.   Now run the simulation and measure the rise time and fall time of the triangle wave in V/100 μs. Are these values consistent with a 40% duty cycle? How do I answer this question?  what is V/100us?
help on this question about noise figure?

Chapter 10 Solutions

Engineering Electromagnetics

Ch. 10 - Two voltage waves of equal amplitude V0, which...Ch. 10 - In a circuit in which a sinusoidal voltage source...Ch. 10 - The skin effect mechanism in transmission lines is...Ch. 10 - A lossless transmission line having characteristic...Ch. 10 - Figure 10.29 See Problem 10.15. For the...Ch. 10 - A 100 lossless transmission line is connected to a...Ch. 10 - Determine the average power absorbed by each...Ch. 10 - The line shown in Figure 10.31 is lossless. Find s...Ch. 10 - A lossless transmission line is 50 cm in length...Ch. 10 - (a) Determine s on the transmission line of Figure...Ch. 10 - Prob. 10.21PCh. 10 - Prob. 10.22PCh. 10 - The normalized load on a lossless transmission...Ch. 10 - Prob. 10.24PCh. 10 - Prob. 10.25PCh. 10 - A 75 lossless line is of length 1.2 . It is...Ch. 10 - Prob. 10.27PCh. 10 - The wavelength on a certain lossless line is 10...Ch. 10 - Prob. 10.29PCh. 10 - A two-wire line constructed of lossless wire of...Ch. 10 - In order to compare the relative sharpness of the...Ch. 10 - In Figure 10.17, let ZL=250 and Z0=50. Find the...Ch. 10 - In Figure 10.17, let ZL=100+j150 and Z0=100. Find...Ch. 10 - The lossless line shown in Figure 10.35 is...Ch. 10 - Prob. 10.35PCh. 10 - The two-wire lines shown in Figure 10.36 are all...Ch. 10 - Prob. 10.37PCh. 10 - Repeat Problem 10.37, with, Z0=50 and RL=Rg=25....Ch. 10 - In the transmission line of Figure 10.20, Z0=50,...Ch. 10 - In the charged line of Figure 10.25, the...Ch. 10 - In the transmission line of Figure 10.37, the...Ch. 10 - Figure 10.38 See Problem 10.42. A simple frozen...Ch. 10 - Figure 10.39 See Problem 10.43. In Figure 10.39,...
Knowledge Booster
Background pattern image
Electrical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Power System Analysis and Design (MindTap Course ...
Electrical Engineering
ISBN:9781305632134
Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher:Cengage Learning
Text book image
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Text book image
EBK ELECTRICAL WIRING RESIDENTIAL
Electrical Engineering
ISBN:9781337516549
Author:Simmons
Publisher:CENGAGE LEARNING - CONSIGNMENT
Text book image
Electricity for Refrigeration, Heating, and Air C...
Mechanical Engineering
ISBN:9781337399128
Author:Russell E. Smith
Publisher:Cengage Learning
Text book image
Electric Motor Control
Electrical Engineering
ISBN:9781133702818
Author:Herman
Publisher:CENGAGE L
David Sarnoff, Howard Armstrong & the Superheterodyne Receiver; Author: Kathy Loves Physics & History;https://www.youtube.com/watch?v=7eTfF67Ka5w;License: Standard Youtube License