BuyFindarrow_forward

Multivariable Calculus

8th Edition
James Stewart
ISBN: 9781305266643

Solutions

Chapter
Section
BuyFindarrow_forward

Multivariable Calculus

8th Edition
James Stewart
ISBN: 9781305266643
Textbook Problem

Use the formula in Exercise 63(d) to find the torsion of the curve r ( t ) = t , 1 2 t 2 , 1 3 t 3 .

To determine

To find: The torsion of the curve r(t)=t,12t2,13t3 .

Explanation

Formula:

Write the expression for torsion of curve r(t) .

τ=(r(t)×r(t))r(t)|r(t)×r(t)|2 (1)

Here,

r(t) is first derivative of r(t) ,

r(t) is second derivative of r(t) , and

r(t) is third derivative of r(t) ,

Consider the two three-dimensional vector functions such as u(t)=u1(t),u2(t),u3(t) and v(t)=v1(t),v2(t),v3(t) .

Cross product of vectors:

Write the expression for cross product of vectors u(t) and v(t) (u(t)×v(t)) .

u(t)×v(t)=|ijku1(t)u2(t)u3(t)v1(t)v2(t)v3(t)|=[(u2(t)v3(t)v2(t)u3(t))],[(u1(t)v3(t)v1(t)u3(t))],[(u1(t)v2(t)v1(t)u2(t))]

Dot product of vectors:

Write the expression for dot product of vectors u(t) and v(t) (u(t)v(t)) .

u(t)v(t)=u1(t),u2(t),u3(t)v1(t),v2(t),v3(t)=u1(t)v1(t)+u2(t)v2(t)+u3(t)v3(t)

Find the value of r(t) .

r(t)=ddtt,12t2,13t3=ddt(t),ddt(12t2),ddt(13t3)=1,12(2t),13(3t2) {ddx(xn)=nxn1}=1,t,t2

Apply differentiation with respect to t on both sides of equation.

r(t)=ddt1,t,t2=ddt(1),ddt(t),ddt(t2)=0,1,2t {ddx(k)=0,ddx(x)=1,ddx(xn)=nxn1}

Apply differentiation with respect to t on both sides of equation

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

Chapter 13 Solutions

Show all chapter solutions add
Sect-13.1 P-11ESect-13.1 P-12ESect-13.1 P-13ESect-13.1 P-14ESect-13.1 P-15ESect-13.1 P-16ESect-13.1 P-17ESect-13.1 P-18ESect-13.1 P-19ESect-13.1 P-20ESect-13.1 P-21ESect-13.1 P-22ESect-13.1 P-23ESect-13.1 P-24ESect-13.1 P-25ESect-13.1 P-26ESect-13.1 P-27ESect-13.1 P-28ESect-13.1 P-29ESect-13.1 P-30ESect-13.1 P-31ESect-13.1 P-32ESect-13.1 P-38ESect-13.1 P-39ESect-13.1 P-40ESect-13.1 P-41ESect-13.1 P-42ESect-13.1 P-43ESect-13.1 P-44ESect-13.1 P-45ESect-13.1 P-46ESect-13.1 P-49ESect-13.1 P-50ESect-13.1 P-53ESect-13.2 P-1ESect-13.2 P-2ESect-13.2 P-3ESect-13.2 P-4ESect-13.2 P-5ESect-13.2 P-6ESect-13.2 P-7ESect-13.2 P-8ESect-13.2 P-9ESect-13.2 P-10ESect-13.2 P-11ESect-13.2 P-12ESect-13.2 P-13ESect-13.2 P-14ESect-13.2 P-15ESect-13.2 P-16ESect-13.2 P-17ESect-13.2 P-18ESect-13.2 P-19ESect-13.2 P-20ESect-13.2 P-21ESect-13.2 P-22ESect-13.2 P-23ESect-13.2 P-24ESect-13.2 P-25ESect-13.2 P-26ESect-13.2 P-27ESect-13.2 P-28ESect-13.2 P-29ESect-13.2 P-30ESect-13.2 P-31ESect-13.2 P-32ESect-13.2 P-33ESect-13.2 P-34ESect-13.2 P-35ESect-13.2 P-36ESect-13.2 P-37ESect-13.2 P-38ESect-13.2 P-39ESect-13.2 P-40ESect-13.2 P-41ESect-13.2 P-42ESect-13.2 P-43ESect-13.2 P-44ESect-13.2 P-45ESect-13.2 P-46ESect-13.2 P-47ESect-13.2 P-48ESect-13.2 P-49ESect-13.2 P-50ESect-13.2 P-51ESect-13.2 P-52ESect-13.2 P-53ESect-13.2 P-54ESect-13.2 P-55ESect-13.2 P-56ESect-13.2 P-57ESect-13.2 P-58ESect-13.3 P-1ESect-13.3 P-2ESect-13.3 P-3ESect-13.3 P-4ESect-13.3 P-5ESect-13.3 P-6ESect-13.3 P-7ESect-13.3 P-8ESect-13.3 P-9ESect-13.3 P-10ESect-13.3 P-11ESect-13.3 P-12ESect-13.3 P-13ESect-13.3 P-14ESect-13.3 P-15ESect-13.3 P-16ESect-13.3 P-17ESect-13.3 P-18ESect-13.3 P-19ESect-13.3 P-20ESect-13.3 P-21ESect-13.3 P-22ESect-13.3 P-23ESect-13.3 P-24ESect-13.3 P-25ESect-13.3 P-26ESect-13.3 P-27ESect-13.3 P-28ESect-13.3 P-29ESect-13.3 P-30ESect-13.3 P-31ESect-13.3 P-32ESect-13.3 P-33ESect-13.3 P-38ESect-13.3 P-39ESect-13.3 P-42ESect-13.3 P-43ESect-13.3 P-44ESect-13.3 P-45ESect-13.3 P-46ESect-13.3 P-47ESect-13.3 P-48ESect-13.3 P-49ESect-13.3 P-50ESect-13.3 P-53ESect-13.3 P-55ESect-13.3 P-56ESect-13.3 P-58ESect-13.3 P-59ESect-13.3 P-60ESect-13.3 P-62ESect-13.3 P-63ESect-13.3 P-64ESect-13.3 P-65ESect-13.3 P-66ESect-13.3 P-67ESect-13.4 P-1ESect-13.4 P-3ESect-13.4 P-4ESect-13.4 P-5ESect-13.4 P-6ESect-13.4 P-7ESect-13.4 P-8ESect-13.4 P-9ESect-13.4 P-10ESect-13.4 P-11ESect-13.4 P-12ESect-13.4 P-13ESect-13.4 P-14ESect-13.4 P-15ESect-13.4 P-16ESect-13.4 P-19ESect-13.4 P-20ESect-13.4 P-21ESect-13.4 P-22ESect-13.4 P-23ESect-13.4 P-24ESect-13.4 P-25ESect-13.4 P-26ESect-13.4 P-27ESect-13.4 P-28ESect-13.4 P-29ESect-13.4 P-30ESect-13.4 P-31ESect-13.4 P-32ESect-13.4 P-34ESect-13.4 P-35ESect-13.4 P-36ESect-13.4 P-37ESect-13.4 P-38ESect-13.4 P-39ESect-13.4 P-40ESect-13.4 P-41ESect-13.4 P-42ESect-13.4 P-44ESect-13.4 P-45ESect-13.4 P-46ECh-13 P-1RCCCh-13 P-2RCCCh-13 P-3RCCCh-13 P-4RCCCh-13 P-5RCCCh-13 P-6RCCCh-13 P-7RCCCh-13 P-8RCCCh-13 P-9RCCCh-13 P-1RQCh-13 P-2RQCh-13 P-3RQCh-13 P-4RQCh-13 P-5RQCh-13 P-6RQCh-13 P-7RQCh-13 P-8RQCh-13 P-9RQCh-13 P-10RQCh-13 P-11RQCh-13 P-12RQCh-13 P-13RQCh-13 P-14RQCh-13 P-1RECh-13 P-2RECh-13 P-3RECh-13 P-4RECh-13 P-5RECh-13 P-6RECh-13 P-7RECh-13 P-8RECh-13 P-9RECh-13 P-10RECh-13 P-11RECh-13 P-12RECh-13 P-13RECh-13 P-14RECh-13 P-15RECh-13 P-16RECh-13 P-17RECh-13 P-18RECh-13 P-19RECh-13 P-20RECh-13 P-21RECh-13 P-22RECh-13 P-23RECh-13 P-1PCh-13 P-2PCh-13 P-3PCh-13 P-4PCh-13 P-5PCh-13 P-6PCh-13 P-7PCh-13 P-8PCh-13 P-9P

Additional Math Solutions

Find more solutions based on key concepts

Show solutions add

Evaluate the integral. 11. 1x3x21dx

Calculus: Early Transcendentals

Sketch the region in the xy-plane. 45. {(x, y) | xy 0}

Single Variable Calculus: Early Transcendentals, Volume I

In Exercises 39-54, simplify the expression. (Assume that x, y, r, s, and t are positive.) 43. x3/4x1/4

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

Solve the system { 3x+2y=24x+5y=2

Mathematical Applications for the Management, Life, and Social Sciences

Construct an angle that measures 75.

Elementary Geometry for College Students

A bacteria population grows in such a way that after t hours its population is 1000 + 10t + t3. The growth rate...

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th

Self Check Expand: (pq)3.

College Algebra (MindTap Course List)