CHEMISTRY: ATOMS FIRST VOL 1 W/CONNECT
CHEMISTRY: ATOMS FIRST VOL 1 W/CONNECT
14th Edition
ISBN: 9781259327933
Author: Burdge
Publisher: MCG
bartleby

Videos

Textbook Question
Book Icon
Chapter 18.3, Problem 2PPB

A galvanic cell with E°cell = 0.30 V can be constructed using an iron electrode in a 1.0 M Fe(NO3)2 solution, and either a tin electrode in a 1.0 M Sn(NO3)2 solution, or a chromium electrode in a 1.0 M Cr(NO3)3 solution—even though Sn2+/Sn and Cr3+/Cr have different standard reduction potentials. Explain and give the overall balanced reaction for each cell.

Expert Solution & Answer
Check Mark
Interpretation Introduction

Interpretation:

To explain the balanced cell reaction of two galvanic cells constructed through the combination of Fe in Fe(NO3)2 with Sn  in Sn(NO3)2 and Fe in Fe(NO3)2 with Cr in Cr(NO3)3 . But the overall standard potential of both the cell was 0.30V.

Concept introduction:

Galvanic cell is an experimental set up used to generated electricity through spontaneous redox reaction. The cell works on the principle of oxidation (anode) and reduction (cathode), taking place simultaneously in a separately location with the transfer of electron between them through an external wire. The standard potential of the electrodes (Eo) were measured in relative with standard hydrogen electrode (SHE) at standard temperature and pressure with electrolyte concentration of 1M and it was tabulated.

In this case two galvanic cells were constructed through the combination of Fe in Fe(NO3)2 with Sn in Sn(NO3)2 and Fe in Fe(NO3)2 with Cr in Cr(NO3)3 . Even though Sn (Eo= +0.13 V) and Cr (Eo= -0.74 V) have different standard electrode potential (Eo), the overall standard potential of both the cells were determined as same (Ecell= 0.30V).

Answer to Problem 2PPB

Cell-1:

First let us discuss the cell made up of Fe in Fe(NO3)2 with Sn in Sn(NO3)2 . Since the standard electrode of Sn (Eo= -0.14 V) is fairly higher than standard electrode potential of Fe (Eo= -0.44 V), Fe undergoes oxidation with liberation of two electrons, which was accepted by Sn2+ to get reduce into Sn . The half-cell reaction for the combination-1 was given below.

Anode (Oxidation) Fe(s)  Fe2+(aq)+2e-Cathode (Reduction) Sn2+(aq)+2e- Sn(s)OverallReaction Fe(s)+ Sn2+(aq) Sn(s)+Fe2+(aq)

Then Ecell of the reaction was calculated as follows

Eocell= EoSn2+/Sn-EoFe2+/Fe = (-0.14V)-(-0.44V) =0.30V.

Cell-2:

The combination of Fe in Fe(NO3)2 with Cr in Cr(NO3)3 ­will be considered as cell-2. The standard electrode of Fe (Eo= -0.44 V), is higher than standard electrode potential of Cr (Eo= -0.74 V), so Cr acts as anode by undergoing oxidation with liberation of three electrons, which was accepted by Fe 2+ to get reduce into Fe. The half-cell reaction for the cell-2 was given below.

Anode (Oxidation) Cr(s) Cr3+(aq)+ 3e-Cathode (Reduction) Fe2+(aq)+2e-  Fe(s)

Charges in the above reaction are unbalanced. In order to balance the charges, oxidation and reduction half need to be multiplied by a whole number as given below.

Anode (Oxidation) 2Cr(s) 2Cr3+(aq)+ 6e-Cathode (Reduction) 3Fe2+(aq)+6e-  3Fe(s)OverallReaction 2Cr(s)+3Fe2+(aq) 2Cr3+(aq)+3Fe(s)

Then Ecell of the above reaction can be calculated as follows

Eocell= EoFe2+/Fe-EoCr3+/Cr = (-0.44V)-(-0.74V) =0.30V.

Explanation of Solution

Cell-1:

First let us discuss the cell made up of Fe in Fe(NO3)2 with Sn in Sn(NO3)2 . Since the standard electrode of Sn (Eo= -0.14 V) is fairly higher than standard electrode potential of Fe (Eo= -0.44 V), Fe undergoes oxidation with liberation of two electrons, which was accepted by Sn2+ to get reduce into Sn . The half-cell reaction for the combination-1 was given below.

Anode (Oxidation) Fe(s)  Fe2+(aq)+2e-Cathode (Reduction) Sn2+(aq)+2e- Sn(s)OverallReaction Fe(s)+ Sn2+(aq) Sn(s)+Fe2+(aq)

Then Ecell of the reaction was calculated as follows

Eocell= EoSn2+/Sn-EoFe2+/Fe = (-0.14V)-(-0.44V) =0.30V.

Cell-2:

The combination of Fe in Fe(NO3)2 with Cr in Cr(NO3)3 ­will be considered as cell-2. The standard electrode of Fe (Eo = -0.44 V) is higher than standard electrode potential of Cr (Eo = -0.74 V), so Cr acts as anode by undergoing oxidation with liberation of three electrons, which was accepted by Fe 2+ to get reduce into Fe. The half-cell reaction for the cell-2 was given below.

Anode (Oxidation) Cr(s) Cr3+(aq)+ 3e-Cathode (Reduction) Fe2+(aq)+2e-  Fe(s)

Charges in the above reaction are unbalanced. In order to balance the charges, oxidation and reduction half need to be multiplied by a whole number as given below.

Anode (Oxidation) 2Cr(s) 2Cr3+(aq)+ 6e-Cathode (Reduction) 3Fe2+(aq)+6e-  3Fe(s)OverallReaction 2Cr(s)+3Fe2+(aq) 2Cr3+(aq)+3Fe(s)

Then Ecell of the above reaction can be calculated as follows

Eocell= EoFe2+/Fe-EoCr3+/Cr = (-0.44V)-(-0.74V) =0.30V.

In the cell-1, Fe act as anode due to low standard reduction potential than Sn, but in case of cell-2 Fe act as cathode, since the standard reduction potential of Cr is lower than Fe. Even though Sn and Cr have different standard reduction potential, coupling with iron resulted in the same standard cell potential.

Conclusion

Balanced equation of the two cells with same standard potential made up of two combination, such as Fe  in Fe(NO3)2 with Sn(NO3)2 and Fe in Fe(NO3)2 with Cr(NO3)3 were presented and the reason for attaining the same Eocell was well explained above.  This is the best example for the role of same metal as anode and cathode.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 18 Solutions

CHEMISTRY: ATOMS FIRST VOL 1 W/CONNECT

Ch. 18.3 - Prob. 18.3WECh. 18.3 - Prob. 3PPACh. 18.3 - Prob. 3PPBCh. 18.3 - Prob. 3PPCCh. 18.3 - Prob. 18.3.1SRCh. 18.3 - Prob. 18.3.2SRCh. 18.3 - Prob. 18.3.3SRCh. 18.3 - Prob. 18.3.4SRCh. 18.4 - Prob. 18.4WECh. 18.4 - Prob. 4PPACh. 18.4 - Prob. 4PPBCh. 18.4 - Prob. 4PPCCh. 18.4 - Prob. 18.5WECh. 18.4 - Prob. 5PPACh. 18.4 - Prob. 5PPBCh. 18.4 - Prob. 5PPCCh. 18.4 - Prob. 18.4.1SRCh. 18.4 - Prob. 18.4.2SRCh. 18.5 - Prob. 18.6WECh. 18.5 - Prob. 6PPACh. 18.5 - Prob. 6PPBCh. 18.5 - Prob. 6PPCCh. 18.5 - Prob. 18.7WECh. 18.5 - Prob. 7PPACh. 18.5 - Prob. 7PPBCh. 18.5 - Prob. 7PPCCh. 18.5 - Prob. 18.5.1SRCh. 18.5 - Prob. 18.5.2SRCh. 18.5 - Prob. 18.5.3SRCh. 18.5 - Prob. 18.5.4SRCh. 18.7 - Prob. 18.8WECh. 18.7 - Prob. 8PPACh. 18.7 - Prob. 8PPBCh. 18.7 - Prob. 8PPCCh. 18.7 - Prob. 18.7.1SRCh. 18.7 - Prob. 18.7.2SRCh. 18.7 - Prob. 18.7.3SRCh. 18 - Balance the following redox equations by the...Ch. 18 - Balance the following redox equations by the...Ch. 18 - In the first scene of the animation, when a zinc...Ch. 18 - What causes the change in the potential of the...Ch. 18 - Why does the color of the blue solution in the...Ch. 18 - Prob. 18.4VCCh. 18 - Define the following terms: anode, cathode, cell...Ch. 18 - Prob. 18.4QPCh. 18 - Prob. 18.5QPCh. 18 - What is a cell diagram? Write the cell diagram for...Ch. 18 - What is the difference between the half-reactions...Ch. 18 - Discuss the spontaneity of an electrochemical...Ch. 18 - Prob. 18.9QPCh. 18 - Prob. 18.10QPCh. 18 - Calculate the standard emf of a cell that uses...Ch. 18 - Prob. 18.12QPCh. 18 - Prob. 18.13QPCh. 18 - Consider the following half-reactions....Ch. 18 - Predict whether NO3 ions will oxidize Mn2+ to MnO4...Ch. 18 - Prob. 18.16QPCh. 18 - Prob. 18.17QPCh. 18 - Prob. 18.18QPCh. 18 - Prob. 18.19QPCh. 18 - Use the information m Table 2.1, and calculate the...Ch. 18 - Prob. 18.21QPCh. 18 - Prob. 18.22QPCh. 18 - Use the standard reduction potentials to find the...Ch. 18 - Calculate G and Kc for the following reactions at...Ch. 18 - Under standard state conditions, what spontaneous...Ch. 18 - Prob. 18.26QPCh. 18 - Balance (in acidic medium) the equation for the...Ch. 18 - Prob. 18.28QPCh. 18 - Prob. 18.29QPCh. 18 - Write the Nernst equation for the following...Ch. 18 - What is the potential of a cell made up of Zn/Zn2+...Ch. 18 - Calculate E, E, and G for the following cell...Ch. 18 - Calculate the standard potential of the cell...Ch. 18 - What is the emf of a cell consisting of a Pb2+/Pb...Ch. 18 - Prob. 18.35QPCh. 18 - Calculate the emf of the following concentration...Ch. 18 - What is a battery? Describe several types of...Ch. 18 - Explain the differences between a primary galvanic...Ch. 18 - Discuss the advantages and disadvantages of fuel...Ch. 18 - The hydrogen-oxygen fuel cell is described in...Ch. 18 - Calculate the standard emf of the propane fuel...Ch. 18 - What is the difference between a galvanic cell...Ch. 18 - Prob. 18.43QPCh. 18 - Calculate the number of grams of copper metal that...Ch. 18 - Prob. 18.45QPCh. 18 - Consider the electrolysis of molten barium...Ch. 18 - Prob. 18.47QPCh. 18 - Prob. 18.48QPCh. 18 - Prob. 18.49QPCh. 18 - How many faradays of electricity are required to...Ch. 18 - Calculate the amounts of Cu and Br2 produced in...Ch. 18 - Prob. 18.52QPCh. 18 - Prob. 18.53QPCh. 18 - A constant electric current flows for 3.75 h...Ch. 18 - What is the hourly production rate of chlorine gas...Ch. 18 - Chromium plating is applied by electrolysis to...Ch. 18 - The passage of a current of 0.750 A for 25.0 min...Ch. 18 - A quantity of 0.300 g of copper was deposited from...Ch. 18 - In a certain electrolysis experiment, 1.44 g of Ag...Ch. 18 - Prob. 18.60QPCh. 18 - Prob. 18.61QPCh. 18 - Prob. 18.62QPCh. 18 - Tarnished silver contains Ag2S. The tarnish can be...Ch. 18 - Prob. 18.64QPCh. 18 - For each of the following redox reactions, (i)...Ch. 18 - Prob. 18.66QPCh. 18 - Prob. 18.67QPCh. 18 - Prob. 18.68QPCh. 18 - Prob. 18.69QPCh. 18 - Prob. 18.70QPCh. 18 - Prob. 18.71QPCh. 18 - Prob. 18.72QPCh. 18 - Prob. 18.73QPCh. 18 - Prob. 18.74QPCh. 18 - A galvanic cell consists of a silver electrode in...Ch. 18 - Explain why chlorine gas can be prepared by...Ch. 18 - Prob. 18.77QPCh. 18 - Prob. 18.78QPCh. 18 - Prob. 18.79QPCh. 18 - Prob. 18.80QPCh. 18 - Prob. 18.81QPCh. 18 - Prob. 18.82QPCh. 18 - An acidified solution was electrolyzed using...Ch. 18 - Prob. 18.84QPCh. 18 - Consider the oxidation of ammonia....Ch. 18 - Prob. 18.86QPCh. 18 - Prob. 18.87QPCh. 18 - Prob. 18.88QPCh. 18 - Prob. 18.89QPCh. 18 - Prob. 18.90QPCh. 18 - Prob. 18.91QPCh. 18 - Prob. 18.92QPCh. 18 - An aqueous solution of a platinum salt is...Ch. 18 - Prob. 18.94QPCh. 18 - Prob. 18.95QPCh. 18 - Prob. 18.96QPCh. 18 - Prob. 18.97QPCh. 18 - A silver rod and a SHE are dipped into a saturated...Ch. 18 - Prob. 18.99QPCh. 18 - Prob. 18.100QPCh. 18 - The magnitudes (but not the signs) of the standard...Ch. 18 - Prob. 18.102QPCh. 18 - Given the standard reduction potential for Au3+ in...Ch. 18 - Prob. 18.104QPCh. 18 - Prob. 18.105QPCh. 18 - Prob. 18.106QPCh. 18 - Prob. 18.107QPCh. 18 - Prob. 18.108QPCh. 18 - Prob. 18.109QPCh. 18 - Prob. 18.110QPCh. 18 - Prob. 18.111QPCh. 18 - In recent years there has been much interest in...Ch. 18 - Prob. 18.113QPCh. 18 - Prob. 18.114QPCh. 18 - Prob. 18.115QPCh. 18 - Prob. 18.116QPCh. 18 - Prob. 18.117QPCh. 18 - A galvanic cell using Mg/Mg2+ and Cu/Cu2+...Ch. 18 - Prob. 18.119QPCh. 18 - Prob. 18.120QPCh. 18 - Lead storage batteries arc rated by ampere-hours,...Ch. 18 - Use Equations 14.10 and 18.3 to calculate the emf...Ch. 18 - Prob. 18.123QPCh. 18 - A 9.00 102 mL amount of 0.200 M MgI2 solution was...Ch. 18 - Prob. 18.125QPCh. 18 - Which of the components of dental amalgam...Ch. 18 - Calculate the equilibrium constant for the...Ch. 18 - Prob. 18.128QPCh. 18 - Prob. 18.129QPCh. 18 - Prob. 18.130QPCh. 18 - Prob. 18.131QPCh. 18 - Prob. 18.1KSPCh. 18 - Prob. 18.2KSPCh. 18 - Prob. 18.3KSPCh. 18 - Prob. 18.4KSP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
  • Text book image
    Chemistry: Principles and Practice
    Chemistry
    ISBN:9780534420123
    Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
    Publisher:Cengage Learning
    Text book image
    Chemistry
    Chemistry
    ISBN:9781305957404
    Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
    Publisher:Cengage Learning
    Text book image
    Principles of Modern Chemistry
    Chemistry
    ISBN:9781305079113
    Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
    Publisher:Cengage Learning
  • Text book image
    Chemistry: The Molecular Science
    Chemistry
    ISBN:9781285199047
    Author:John W. Moore, Conrad L. Stanitski
    Publisher:Cengage Learning
    Text book image
    Chemistry: An Atoms First Approach
    Chemistry
    ISBN:9781305079243
    Author:Steven S. Zumdahl, Susan A. Zumdahl
    Publisher:Cengage Learning
    Text book image
    Chemistry
    Chemistry
    ISBN:9781133611097
    Author:Steven S. Zumdahl
    Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781133611097
Author:Steven S. Zumdahl
Publisher:Cengage Learning
Introduction to Electrochemistry; Author: Tyler DeWitt;https://www.youtube.com/watch?v=teTkvUtW4SA;License: Standard YouTube License, CC-BY