   # Use the table of standard reduction potentials (Appendix M) to calculate Δ r G ° for the following reactions at 298 K. (a) ClO 3 − (aq) + 5 Cl − (aq) + 6 H + (aq) → 3 Cl 2 (g) + 3 H 2 O( ℓ ) (b) AgCI(s) + Br − (aq) → AgBr(s) + Cl − (aq) ### Chemistry & Chemical Reactivity

9th Edition
John C. Kotz + 3 others
Publisher: Cengage Learning
ISBN: 9781133949640

#### Solutions

Chapter
Section ### Chemistry & Chemical Reactivity

9th Edition
John C. Kotz + 3 others
Publisher: Cengage Learning
ISBN: 9781133949640
Chapter 19, Problem 86GQ
Textbook Problem
10 views

## Use the table of standard reduction potentials (Appendix M) to calculate ΔrG° for the following reactions at 298 K. (a) ClO3−(aq) + 5 Cl−(aq) + 6 H+(aq) → 3 Cl2(g) + 3 H2O(ℓ) (b) AgCI(s) + Br−(aq) → AgBr(s) + Cl−(aq)

(a)

Interpretation Introduction

Interpretation:

The ΔrG0 for the following reaction has to be determined.

(a) ClO3-(aq) + 5Cl-(aq) + 6H+ (aq) 3Cl2(g) + 3H2O(l)

Concept introduction:

According to the first law of thermodynamics, the change in internal energy of a system is equal ti the heat added to the sysytem minus the work done by the system.

The equation is as follows.

ΔU = Q - WΔU = Change in internal energyQ = Heat added to the systemW=Work done by the system

In voltaic cell, the maximum cell potential is directly related to the free energy difference between the reactants and products in the cell.

ΔG0= -nFE0n = Number of moles transferred per mole of reactant and productsF = Faradayconstant=96485C/mol  E0= Volts = Work(J)/Charge(C)

The relation between standard cell potential and equilibrium constant is as follows.

lnK = nE00.0257 at 298K

### Explanation of Solution

The given chemical reaction is as follows.

ClO3-(aq) + 5Cl-(aq) + 6H+ (aq) 3Cl2(g) + 3H2O(l)

First, we have to find the oxidized and reduced elements.

Oxidation state:

ClO3-x + 3(-2)= -1x = +5

Cl- and ClO3- are being oxidized into Cl2 and H2O.

Let’s write an each half cell reaction.

At anode:Oxiation : 5Cl(aq) + 5e  52Cl2(g)At cathode:Reduction : ClO3(aq) + 6H++5e-12Cl2(g) + 3H2O

Let’s calculate the Ecello of the reaction

(b)

Interpretation Introduction

Interpretation:

The ΔrG0 for the following reactions has to be determined.

(b) AgCl(s) + Br-(aq) AgBr (s) + Cl-(aq).

Concept introduction:

According to the first law of thermodynamics, the change in internal energy of a system is equal ti the heat added to the sysytem minus the work done by the system.

The equation is as follows.

ΔU = Q - WΔU = Change in internal energyQ = Heat added to the systemW=Work done by the system

In voltaic cell, the maximum cell potential is directly related to the free energy difference between the reactants and products in the cell.

ΔG0= -nFE0n = Number of moles transferred per mole of reactant and productsF = Faradayconstant=96485C/mol  E0= Volts = Work(J)/Charge(C)

The relation between standard cell potential and equilibrium constant is as follows.

lnK = nE00.0257 at 298K

### Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

#### The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

Find more solutions based on key concepts
Fried fish from fast-food restaurants and frozen fried fish products are often low in omega-3 and high in solid...

Nutrition: Concepts and Controversies - Standalone book (MindTap Course List)

In the following diagram, designate each daughter cell as diploid (2n) or haploid (n).

Human Heredity: Principles and Issues (MindTap Course List)

How could you detect Earths precession t examining star chats from ancient Egypt?

Horizons: Exploring the Universe (MindTap Course List)

Why does a diatomic gas have a greater energy content per mole than a monatomic gas at the same temperature?

Physics for Scientists and Engineers, Technology Update (No access codes included) 