Fundamentals of Heat and Mass Transfer
Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470501979
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
bartleby

Videos

Textbook Question
Book Icon
Chapter 2, Problem 2.50P

An electric cable of radius r 1 and thermal conductivity k e is enclosed by an insulating sleeve whose outer surface is of radius r 2 and experiences convection heat transfer and radiation exchange with the adjoining air and large surroundings. respectively. When electric current passes through the cable, thermal energy is generated within the cable at a volumetric rate q . .
Chapter 2, Problem 2.50P, An electric cable of radius r1 and thermal conductivity ke is enclosed by an insulating sleeve whose

  1. Write the steady-state forms of the heat diffusion equation for the insulation and the cable. Verify that these equations are satisfied by the following temperature distributions:

Insulation : T ( r ) = T s , 2 + ( T s , 1 T s , 2 ) ln ( r / r 2 ) ln ( r 1 / r 2 ) Cable: T ( r ) = T s , 1 + q . r 1 2 4 k c ( 1 r 2 r 1 2 )
Sketch the temperature distribution, T ( r ) , in the cable and the sleeve, labeling key features.

  • Applying Fourier's law, show that the rate of conduction heat transfer per unit length through the sleeve may be expressed as
    q . = 2 π k s ( T s , 1 T s , 2 ) ln ( r 2 / r 1 )
    Applying an energy balance to a control surface placed around the cable, obtain an alternative expression for q r ' , expressing your result in terms of q . and r 1 .
  • Applying an energy balance to a control surface placed around the outer surface of the sleeve. obtain an expression from which T s , 2 may be determined as a function of q . , r 1 , h , T , ε , and T sur .
  • Consider conditions for which 250A are passing through a cable having an electric resistance per unit length of R e ' = 0.005 Ω /m , a radius of r 1 = 15 mm, and a thermal conductivity of k e = 200 W/m K . For k s = 15 W/m K, r 2 = 15.5 mm , h = 25 W/m 2 K, ε = 0.9 , T = 25 ° C, and T sur = 35 ° C, evaluate the surface temperatures, T s , 1 , and T s , 2 , as well as the temperature To at the centerline of the cable.
  • With all other conditions remaining the same. compute and plot T o , T s , 1 , and T s , 2 as a function of r 2 for 15.5 r 2 20 mm .
  • Blurred answer
    Students have asked these similar questions
    A hollow aluminum sphere, with an electrical heater in the center, is used in tests to determine the thermal conductivity of insulating materials. The inner and outer radii of the sphere are o.18 and o.21 m, respectively, and testing is done under steady-state conditions with the inner surface of the aluminum maintained at 250°C. In a particular test, a spherical shell of insulation is cast on the outer surface of the sphere to a thickness of o.15 m. The system is in a room for which the air temperature is 20°C and the convection coefficient at the outer surface of the insulation is 30 W/m2. K. If 80 W is dissipated by the heater under steady-state conditions, what is the thermal conductivity of the insulation?
    4.Water at a temperature of T∞ = 25°C flows over one of the surfaces of a steel wall (AISI 1010) whose temperature is Ts,1 = 40°C and thermal conductivity of steel is 671 w/m.k. The wall is 0.35 m thick, and its other surface temperature is Ts,2 = 100°C. For steady state conditions what is the convection coefficient associated with the water flow?
    19) In fabrication process, steel components are formed hot and then quenched in water. Consider 2 m long, 0.2 m diameter steel cylinder (k = 40 W/m.°C, a = 10-5 m² /s), initially at 400 °C, that is suddenly quenched in water at 50 °C. If heat transfer coefficient is 200 W/m². K, calculate the following 20 min min after immersion: a) center temperature, b) surface temperature, c) The heat transferred to the water during the initial 20 min.

    Chapter 2 Solutions

    Fundamentals of Heat and Mass Transfer

    Ch. 2 - Consider steady-state conditions for...Ch. 2 - Consider a plane wall 100 mm thick and of thermal...Ch. 2 - A cylinder of radius ro, length L, and thermal...Ch. 2 - In the two-dimensional body illustrated, the...Ch. 2 - Consider the geometry of Problem 2.14 for the case...Ch. 2 - Steady-state, one-dimensional conduction occurs in...Ch. 2 - An apparatus for measuring thermal conductivity...Ch. 2 - An engineer desires to measure the thermal...Ch. 2 - Consider a 300mm300mm window in an aircraft. For a...Ch. 2 - Consider a small but known volume of metal that...Ch. 2 - Use INT to perform the following tasks. Graph the...Ch. 2 - Calculate the thermal conductivity of air,...Ch. 2 - A method for determining the thermal conductivity...Ch. 2 - Compare and contrast the heat capacity cp of...Ch. 2 - A cylindrical rod of stainless steel is insulated...Ch. 2 - At a given instant of time, the temperature...Ch. 2 - A pan is used to boil water by placing it on a...Ch. 2 - Uniform internal heat generation at q=5107W/m3 is...Ch. 2 - Consider a one-dimensional plane wall with...Ch. 2 - The steady-state temperature distribution in a...Ch. 2 - The temperature distribution across a wall 0.3 m...Ch. 2 - Prob. 2.33PCh. 2 - One-dimensional, steady-state conduction with...Ch. 2 - Derive the heat diffusion equation, Equation 2.26,...Ch. 2 - Derive the heat diffusion equation, Equation 2.29....Ch. 2 - The steady-state temperature distribution in a...Ch. 2 - One-dimensional, steady-state conduction with no...Ch. 2 - One-dimensional, steady-state conduction with no...Ch. 2 - The steady-state temperature distribution in a...Ch. 2 - Prob. 2.41PCh. 2 - Prob. 2.42PCh. 2 - cylindrical system illustrated has negligible...Ch. 2 - Beginning with a differential control volume in...Ch. 2 - Prob. 2.45PCh. 2 - Prob. 2.46PCh. 2 - For a long circular tube of inner and outer radii...Ch. 2 - Passage of an electric current through a long...Ch. 2 - Two-dimensional. steady-state conduction occurs in...Ch. 2 - An electric cable of radius r1 and thermal...Ch. 2 - A spherical shell of inner and outer radii ri and...Ch. 2 - A chemically reacting mixture is stored in a...Ch. 2 - A thin electrical heater dissipating 4000W/m2 is...Ch. 2 - The one-dimensional system of mass M with constant...Ch. 2 - Consider a one-dimensional plane wall of thickness...Ch. 2 - A large plate of thickness 2L is at a uniform...Ch. 2 - The plane wall with constant properties and no...Ch. 2 - Consider the steady-state temperature...Ch. 2 - A plane wall has constant properties, no internal...Ch. 2 - A plane wall with constant properties is initially...Ch. 2 - Consider the conditions associated with Problem...Ch. 2 - Consider the steady-state temperature distribution...Ch. 2 - A spherical particle of radius r1 experiences...Ch. 2 - Prob. 2.64PCh. 2 - A plane wall of thickness L=0.1m experiences...Ch. 2 - Prob. 2.66PCh. 2 - A composite one-dimensional plane wall is of...Ch. 2 - Typically, air is heated in a hair dryer by...Ch. 2 - Prob. 2.69P
    Knowledge Booster
    Background pattern image
    Mechanical Engineering
    Learn more about
    Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
    Similar questions
    Recommended textbooks for you
    Text book image
    Principles of Heat Transfer (Activate Learning wi...
    Mechanical Engineering
    ISBN:9781305387102
    Author:Kreith, Frank; Manglik, Raj M.
    Publisher:Cengage Learning
    Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license