Fundamentals of Heat and Mass Transfer
Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470501979
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 2, Problem 2.27P

A pan is used to boil water by placing it on a stove, from which heat is transferred at a fixed rate q 0 . Thre are two stages to the process. In Stage 1, the water is taken from its initial (room) temperature T i to the boiling point, as heat is transferred from the pan by natural convection. During this stage, a constant value of the convection coefficient h may be assumed. while the bulk temperature of the water increases with time, T = T ( t ) . In Stage 2, the water has come to a boil, and its temperature remains at a fixed value, T = T b , as heating continues. Consider a pan bottom of thickness L and diameter D. with a coordinate system corresponding to x = 0 and x = L for the surfaces in contact with the stove and water, respectively.

  1. Write the form of the heat equation and the boundary/initial conditions that determine the variation of temperature with position and time, T ( x , t ) , in the pan bottom during Stage 1. Express your result in terms of the parameters q O , D, L, h, and T , as well as appropriate properties of the pan material.
  2. During Stage 2, the surface of the pan in contact with the water is at a fixed temperature, T ( L , t ) = T L > T b . Write the form of the heat equation and boundary conditions that determine the temperature distribution T ( x ) in the pan bottom. Express your result in terms of the parameters q o , D. L and T L , as well as appropriate properties of the pan material.

Blurred answer
Students have asked these similar questions
The cylinders that come out of the heat treatment furnace are cooled in a stagnant air environment in a horizontal position. The cylinders have a diameter of 100 mm and a length of 0.1 m. The temperature of the cylinders is 440 ° C and the ambient temperature is 20 ° C. Calculate the heat transfer from 10 cylinders to the environment. a) 3125 W b) 2350 W C) 1848 W d) 1354 W e) 2750 W
n electric generator at a power plant produces energy by passing superheated steam from a high temperature container (reservoir), through a pipe connected to a series of fans, and then into a low temperature reservoir. As the steam passes across the blades of the fans some of the heat energy of the steam is transformed into mechanical energy, which turns the fans which in turn are connected to a generator, which in turn converts the mechanical energy into electrical energy. If the high temperature steam has a temperature of 412.1 K and the low temperature reservoir has a temperature of 105.4 K, what is the Carnot efficiency of this process?
A liquid metal flows at a mass rate of 3 kg/s through a constant heat flux 5-cm-i.d tube in a nuclear reactor. The fluid at 473 K is to be heated with the tube wall 30 K above the fluid temperature. Determine the length of the tube required for a 1-K rise in bulk fluid temperature, using the following properties: p = 7.7 x 10^3 kg/m^3v = 8.0 x 10^-8 m^2/sCp = 130 J/(kg K)k = 12 W/mKPr = 0.011 Kaufman's correlation: Nu = 0,625.(Re.Pr)0,4

Chapter 2 Solutions

Fundamentals of Heat and Mass Transfer

Ch. 2 - Consider steady-state conditions for...Ch. 2 - Consider a plane wall 100 mm thick and of thermal...Ch. 2 - A cylinder of radius ro, length L, and thermal...Ch. 2 - In the two-dimensional body illustrated, the...Ch. 2 - Consider the geometry of Problem 2.14 for the case...Ch. 2 - Steady-state, one-dimensional conduction occurs in...Ch. 2 - An apparatus for measuring thermal conductivity...Ch. 2 - An engineer desires to measure the thermal...Ch. 2 - Consider a 300mm300mm window in an aircraft. For a...Ch. 2 - Consider a small but known volume of metal that...Ch. 2 - Use INT to perform the following tasks. Graph the...Ch. 2 - Calculate the thermal conductivity of air,...Ch. 2 - A method for determining the thermal conductivity...Ch. 2 - Compare and contrast the heat capacity cp of...Ch. 2 - A cylindrical rod of stainless steel is insulated...Ch. 2 - At a given instant of time, the temperature...Ch. 2 - A pan is used to boil water by placing it on a...Ch. 2 - Uniform internal heat generation at q=5107W/m3 is...Ch. 2 - Consider a one-dimensional plane wall with...Ch. 2 - The steady-state temperature distribution in a...Ch. 2 - The temperature distribution across a wall 0.3 m...Ch. 2 - Prob. 2.33PCh. 2 - One-dimensional, steady-state conduction with...Ch. 2 - Derive the heat diffusion equation, Equation 2.26,...Ch. 2 - Derive the heat diffusion equation, Equation 2.29....Ch. 2 - The steady-state temperature distribution in a...Ch. 2 - One-dimensional, steady-state conduction with no...Ch. 2 - One-dimensional, steady-state conduction with no...Ch. 2 - The steady-state temperature distribution in a...Ch. 2 - Prob. 2.41PCh. 2 - Prob. 2.42PCh. 2 - cylindrical system illustrated has negligible...Ch. 2 - Beginning with a differential control volume in...Ch. 2 - Prob. 2.45PCh. 2 - Prob. 2.46PCh. 2 - For a long circular tube of inner and outer radii...Ch. 2 - Passage of an electric current through a long...Ch. 2 - Two-dimensional. steady-state conduction occurs in...Ch. 2 - An electric cable of radius r1 and thermal...Ch. 2 - A spherical shell of inner and outer radii ri and...Ch. 2 - A chemically reacting mixture is stored in a...Ch. 2 - A thin electrical heater dissipating 4000W/m2 is...Ch. 2 - The one-dimensional system of mass M with constant...Ch. 2 - Consider a one-dimensional plane wall of thickness...Ch. 2 - A large plate of thickness 2L is at a uniform...Ch. 2 - The plane wall with constant properties and no...Ch. 2 - Consider the steady-state temperature...Ch. 2 - A plane wall has constant properties, no internal...Ch. 2 - A plane wall with constant properties is initially...Ch. 2 - Consider the conditions associated with Problem...Ch. 2 - Consider the steady-state temperature distribution...Ch. 2 - A spherical particle of radius r1 experiences...Ch. 2 - Prob. 2.64PCh. 2 - A plane wall of thickness L=0.1m experiences...Ch. 2 - Prob. 2.66PCh. 2 - A composite one-dimensional plane wall is of...Ch. 2 - Typically, air is heated in a hair dryer by...Ch. 2 - Prob. 2.69P
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license