Fundamentals of Heat and Mass Transfer
Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470501979
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 2, Problem 2.55P

Consider a one-dimensional plane wall of thickness 2L. The surface at x = L is subjected to convective conditions characterized by T , 1 , h 1 , while the surface at x = + L is subjected to conditions T , 2 , h 2 . The initial temperature of the wall is T o = ( T , 1 , + T , 2 ) / 2 where T , 1 > T , 2 .
Chapter 2, Problem 2.55P, Consider a one-dimensional plane wall of thickness 2L. The surface at x=L is subjected to convective

  1. Write the differential equation. and identify the boundary and initial conditions that could be used to determine the temperature distribution T ( x , t ) a function of position and time.
  2. On T x coordinates, sketch the temperature distributions for the initial condition. the steady-state condition, and for two intermediate times for the case h 1 = h 2 .
  3. On q x n t coordinates, sketch the heat flux q x n ( x , t ) at the planes x = 0 , L and + L .
  4. The value of h 1 is now doubled with all other conditions being identical as in parts (a) through (c). On T x coordinates drawn to the same scale as used in part (b), sketch the temperature distributions for the initial condition, the steady-state condition, and for two intermediate times. Compare the sketch to that of part (b).
  5. Using the doubled value of h 1 , sketch the heat flux q x n ( x , t ) at the planes x = 0 , L , and + L on the same plot you prepared for part (c). Compare the two responses.

Blurred answer
Students have asked these similar questions
A cylindrical body having 10 cm diameter and lenth of 30 cm passes through a heat treatment furnace which is 6 m in length. The body must reach a temperature of 800°C before it comes out of the furnace. The furnace gas is at 1250°C and body initial temperature is 90°C. How much time it will take to attain the required temperature  ?  Take h = 100 W/m² °C. Take K(steel) = 40 W/m°C and a (thermal diffusivity of steel) = 1.16 x 10-5 m²/s.
The composite wall which is composed of 10 cm brick (k=0.40 W/m2-C), 2 cm cellotex (k=0.03 W/m2- OC), and 6 cm (k=0.30 W/m2-OC),has an outer (brick) temperature T=23 OC and an inner (plaster)temperature T=90 OC. Find the temperature between the cellotex andplaster in OC.
The top surface of the passenger car of a train moving at a velocity of 115 km/h is 2.8 m wide and 8 m long. The top surface is absorbing solar radiation at a rate of 380 W/m2 and the temperature of the ambient air is 30°C. Assuming the roof of the car to be perfectly insulated and the radiation heat exchange with the surroundings to be small relative to convection, determine the equilibrium temperature of the top surface of the car.  The properties of air at 30°C are (Table A-15) k = 0.02588 W/m⋅°C, v = 1.608 × 10−5 m2/s, and Pr = 0.7282.The equilibrium temperature of the top surface of the car is:

Chapter 2 Solutions

Fundamentals of Heat and Mass Transfer

Ch. 2 - Consider steady-state conditions for...Ch. 2 - Consider a plane wall 100 mm thick and of thermal...Ch. 2 - A cylinder of radius ro, length L, and thermal...Ch. 2 - In the two-dimensional body illustrated, the...Ch. 2 - Consider the geometry of Problem 2.14 for the case...Ch. 2 - Steady-state, one-dimensional conduction occurs in...Ch. 2 - An apparatus for measuring thermal conductivity...Ch. 2 - An engineer desires to measure the thermal...Ch. 2 - Consider a 300mm300mm window in an aircraft. For a...Ch. 2 - Consider a small but known volume of metal that...Ch. 2 - Use INT to perform the following tasks. Graph the...Ch. 2 - Calculate the thermal conductivity of air,...Ch. 2 - A method for determining the thermal conductivity...Ch. 2 - Compare and contrast the heat capacity cp of...Ch. 2 - A cylindrical rod of stainless steel is insulated...Ch. 2 - At a given instant of time, the temperature...Ch. 2 - A pan is used to boil water by placing it on a...Ch. 2 - Uniform internal heat generation at q=5107W/m3 is...Ch. 2 - Consider a one-dimensional plane wall with...Ch. 2 - The steady-state temperature distribution in a...Ch. 2 - The temperature distribution across a wall 0.3 m...Ch. 2 - Prob. 2.33PCh. 2 - One-dimensional, steady-state conduction with...Ch. 2 - Derive the heat diffusion equation, Equation 2.26,...Ch. 2 - Derive the heat diffusion equation, Equation 2.29....Ch. 2 - The steady-state temperature distribution in a...Ch. 2 - One-dimensional, steady-state conduction with no...Ch. 2 - One-dimensional, steady-state conduction with no...Ch. 2 - The steady-state temperature distribution in a...Ch. 2 - Prob. 2.41PCh. 2 - Prob. 2.42PCh. 2 - cylindrical system illustrated has negligible...Ch. 2 - Beginning with a differential control volume in...Ch. 2 - Prob. 2.45PCh. 2 - Prob. 2.46PCh. 2 - For a long circular tube of inner and outer radii...Ch. 2 - Passage of an electric current through a long...Ch. 2 - Two-dimensional. steady-state conduction occurs in...Ch. 2 - An electric cable of radius r1 and thermal...Ch. 2 - A spherical shell of inner and outer radii ri and...Ch. 2 - A chemically reacting mixture is stored in a...Ch. 2 - A thin electrical heater dissipating 4000W/m2 is...Ch. 2 - The one-dimensional system of mass M with constant...Ch. 2 - Consider a one-dimensional plane wall of thickness...Ch. 2 - A large plate of thickness 2L is at a uniform...Ch. 2 - The plane wall with constant properties and no...Ch. 2 - Consider the steady-state temperature...Ch. 2 - A plane wall has constant properties, no internal...Ch. 2 - A plane wall with constant properties is initially...Ch. 2 - Consider the conditions associated with Problem...Ch. 2 - Consider the steady-state temperature distribution...Ch. 2 - A spherical particle of radius r1 experiences...Ch. 2 - Prob. 2.64PCh. 2 - A plane wall of thickness L=0.1m experiences...Ch. 2 - Prob. 2.66PCh. 2 - A composite one-dimensional plane wall is of...Ch. 2 - Typically, air is heated in a hair dryer by...Ch. 2 - Prob. 2.69P
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license