Fundamentals of Heat and Mass Transfer
Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470501979
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 2, Problem 2.59P

A plane wall has constant properties, no internal heat generation. and is initially at a uniform temperature T i . Suddenly, the surface at x = L is heated by a fluid at T having a convection coefficient h. At the same instant, the electrical heater is energized. providing a constant heat flux q o n at x = 0.
Chapter 2, Problem 2.59P, A plane wall has constant properties, no internal heat generation. and is initially at a uniform

  1. On T x coordinates, sketch the temperature distributions for the following conditions: initial condition ( t 0 ) , steady-state condition ( t ) , and for two intermediate times.
  2. On q x n x coordinates, sketch the heat flux corresponding to the four temperature distributions of part (a).
  3. On q x n t coordinates, sketch the heat flux at the locations x = 0 and x = L . That is, show qualitatively how q n x ( 0 , t ) and q x n ( L , t ) vary with time.
  4. Derive an expression for the steady-state temperature at the heater surface, T ( 0 , ) , in terms of q 0 n , T , k, h, and L.

Blurred answer
Students have asked these similar questions
A truncated solid cone is of circular cross section, and its diameter is related to the axial coordinate by an expression of the form D = ax3/2, where a = 2 m−1/2.       The sides are well insulated, while the top surface of the cone at x1 is maintained at T1 and the bottom surface at x2 is maintained at T2. Conductivity k = 336 W/m-K (a) Obtain an expression for the temperature distribution T(x). (b) What is the rate of heat transfer across the cone if it is constructed of pure aluminum with x1 = 0.086 m, T1 = 113°C, x2 = 0.270 m, and T2 = 25°C?
‏A curved surface of a rod of length L is perfectly insulated against the flow of heat . The rod , which is so thin that heat flow in it can be assumed to be one dimensional , is initially at the temperature U(x,0 ) = 20 x / 3L ° C . Find the temperature at any point in the road at any subsequent time if at t = 0 the temperature at each end of the rod is suddenly reduced to 0 ° C and maintained at that temperature thereafter .
Question 2:  The composite wall of an oven consists of three materials, two of which are of known thermal conductivity, kA  20 W/m  K and kC50 W/m  K, and known thickness, LA 0.30 m and LC  0.15 m. The third material, B, which is sandwiched between materials A and C, is of known thickness, LB  0.15 m, but unknown thermal conductivity kB. Under steady-state operating conditions, measurements reveal an outer surface temperature of Ts,o  20°C, an inner surface temperature of Ts,i  600°C, and an oven air temperature of T  800°C. The inside convection coefficient h is known to be 25 W/m2  K. What is the value of kB?

Chapter 2 Solutions

Fundamentals of Heat and Mass Transfer

Ch. 2 - Consider steady-state conditions for...Ch. 2 - Consider a plane wall 100 mm thick and of thermal...Ch. 2 - A cylinder of radius ro, length L, and thermal...Ch. 2 - In the two-dimensional body illustrated, the...Ch. 2 - Consider the geometry of Problem 2.14 for the case...Ch. 2 - Steady-state, one-dimensional conduction occurs in...Ch. 2 - An apparatus for measuring thermal conductivity...Ch. 2 - An engineer desires to measure the thermal...Ch. 2 - Consider a 300mm300mm window in an aircraft. For a...Ch. 2 - Consider a small but known volume of metal that...Ch. 2 - Use INT to perform the following tasks. Graph the...Ch. 2 - Calculate the thermal conductivity of air,...Ch. 2 - A method for determining the thermal conductivity...Ch. 2 - Compare and contrast the heat capacity cp of...Ch. 2 - A cylindrical rod of stainless steel is insulated...Ch. 2 - At a given instant of time, the temperature...Ch. 2 - A pan is used to boil water by placing it on a...Ch. 2 - Uniform internal heat generation at q=5107W/m3 is...Ch. 2 - Consider a one-dimensional plane wall with...Ch. 2 - The steady-state temperature distribution in a...Ch. 2 - The temperature distribution across a wall 0.3 m...Ch. 2 - Prob. 2.33PCh. 2 - One-dimensional, steady-state conduction with...Ch. 2 - Derive the heat diffusion equation, Equation 2.26,...Ch. 2 - Derive the heat diffusion equation, Equation 2.29....Ch. 2 - The steady-state temperature distribution in a...Ch. 2 - One-dimensional, steady-state conduction with no...Ch. 2 - One-dimensional, steady-state conduction with no...Ch. 2 - The steady-state temperature distribution in a...Ch. 2 - Prob. 2.41PCh. 2 - Prob. 2.42PCh. 2 - cylindrical system illustrated has negligible...Ch. 2 - Beginning with a differential control volume in...Ch. 2 - Prob. 2.45PCh. 2 - Prob. 2.46PCh. 2 - For a long circular tube of inner and outer radii...Ch. 2 - Passage of an electric current through a long...Ch. 2 - Two-dimensional. steady-state conduction occurs in...Ch. 2 - An electric cable of radius r1 and thermal...Ch. 2 - A spherical shell of inner and outer radii ri and...Ch. 2 - A chemically reacting mixture is stored in a...Ch. 2 - A thin electrical heater dissipating 4000W/m2 is...Ch. 2 - The one-dimensional system of mass M with constant...Ch. 2 - Consider a one-dimensional plane wall of thickness...Ch. 2 - A large plate of thickness 2L is at a uniform...Ch. 2 - The plane wall with constant properties and no...Ch. 2 - Consider the steady-state temperature...Ch. 2 - A plane wall has constant properties, no internal...Ch. 2 - A plane wall with constant properties is initially...Ch. 2 - Consider the conditions associated with Problem...Ch. 2 - Consider the steady-state temperature distribution...Ch. 2 - A spherical particle of radius r1 experiences...Ch. 2 - Prob. 2.64PCh. 2 - A plane wall of thickness L=0.1m experiences...Ch. 2 - Prob. 2.66PCh. 2 - A composite one-dimensional plane wall is of...Ch. 2 - Typically, air is heated in a hair dryer by...Ch. 2 - Prob. 2.69P
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Introduction to Diffusion in Solids; Author: Engineering and Design Solutions;https://www.youtube.com/watch?v=K_1QmKJvNjc;License: Standard youtube license