Tutorials in Introductory Physics
Tutorials in Introductory Physics
1st Edition
ISBN: 9780130970695
Author: Peter S. Shaffer, Lillian C. McDermott
Publisher: Addison Wesley
Question
Book Icon
Chapter 24.4, Problem 2TH
To determine

ToExplain:The height of shadow after the removal of plastic with clear and neat labeled ray diagram

Blurred answer
Students have asked these similar questions
A beam of light travels vertically downward and strikes a horizontal mirror, reflecting directly back vertically upward, as indicated by the black dashed line in the diagram at left. The mirror is now rotated, so that it is 10° away from horizontal, as is the red mirror in the diagram . The incident solid black ray is the same in both cases. a) At what angle from the vertical will the reflected beam (the red dashed arrow) now be seen? b) If the mirror is further rotated until it is 20° from the horizontal, what will be the new angle between the reflected beam and the vertical?
A thin beam of white light is directed at a flat sheet of silicate flint glass at an angle of 20° to the surface of the sheet. Due to dispersion in the glass, the beam is spread out in a spectrum as shown in the figure. The refractive index of silicate flint glass versus wavelength is graphed in figure to the right. (a) The rays (A and B) shown in the figure correspond to the extreme wavelengths. Which corresponds to red and which to violet? Explain your reasoning. (b) For what thickness of the glass sheet will the spectrum be 1.0 mm wide, as shown (see Problem 7)? Hint: you must first solve Problem 7 first before doing Problem 8). Answer: 93.5 mm
A narrow beam of light is incident on the left side of the prism shown in the figure below. The prism is a right triangle, with two of its angles measuring 45°. A) The transmitted beam that exits the hypotenuse of the prism makes an angle of ? = 17.5° with the direction of the incident beam. What is the index of refraction of the prism? B) In part (a), we assumed the beam was monochromatic. Consider instead the case where the beam was composed of white light. Because the index of refraction differs for different wavelengths, the white light would be dispersed into constituent colors. Assume the index of refraction for blue wavelengths is 1.01n and for red wavelengths it is 0.99n, where n is the index of refraction found in part (a). What is the angular spread (in degrees) between red and blue light exiting the prism?

Chapter 24 Solutions

Tutorials in Introductory Physics

Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON