EBK NUMERICAL METHODS FOR ENGINEERS
EBK NUMERICAL METHODS FOR ENGINEERS
7th Edition
ISBN: 8220100254147
Author: Chapra
Publisher: MCG
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 28, Problem 32P

The Lotka-Volterra equations described in Sec. 28.2 have been refined to include additional factors that impact predator-prey dynamics. For example, over and above predation, prey population can be limited by other factors such as space. Space limitation can be incorporated into the model as a carrying capacity (recall the logistic model described in Prob. 28.16) as in

d x d t = a ( 1 x K ) x b x y

d y d t = c y + d x y

where k = the the carrying capacity. Use the same parameter values and initial conditions as in Sec. 28.2 to integrate these equations from t = 0 to 100 using ode45.

(a) Employ a very large value of k = 10 8 to validate that you obtain the same results as in Sec. 28.2.

(b) Compare (a) with the more realistic carrying capacity of k = 200 . Discuss your results.

Blurred answer
Students have asked these similar questions
2. For each of the situations described below, use an initial value problem to model the situation. Clearly define any variables and functions used. Do not solve the initial value problems. a. A 60kg ball is released from rest 3km above the Earth. Its drag force has a proportionality constant of 50 . Model its velocity as a function of time. m b. Air conditioning is turned off in an empty building. Initially, at 6PM, it has an interior temperature of 60°F. The building has a time constant of 4 hours. (Note: This is the time constant, not the constant of proportionality in Newton's Law.) The outdoor temperature fluctuates sinusoidally, reaching a maxmimum of 100°F at noon and a minimum of 60°F at midnight every day. Assume there are no heating or cooling effects on the build aside from Newton's Law of Cooling. Model the building's temperature as a function of time.
A special case of a linear function occurs when we talk about direct variation. If the  quantities x and y are related by an equation y − kx for some constant k ± 0, we say that y varies directly as x, or y is proportional to x. The constant k is called the constant of proportionality. Equivalently, we can write fsxd − kx, where f is a linear function whose graph has slope k and y-intercept 0. (a) As dry air moves upward, it expands and cools. If the ground temperature is 20°C  and the temperature at a height of 1 km is 10°C, express the temperature T (in °C) as a  function of the height h (in kilometers), assuming that a linear model is appropriate. (b) Draw the graph of the function in part (a). What does the slope represent?(c) What is the temperature at a height of 2.5 km?
a) The probability that a regularly scheduled flight departs on time is P(D)=0.83, the probability that it arrives on time is P(A)=0.82; and the probability that it departs and arrives on time is P(D n A)=0.78. Calculate the conditional probability that a plane: (i) arrives on time, given that it departed on time (ii) departed on time, given that it has arrived on time. b) A developer of a new subdivision offers prospective home buyers a choice of Tudor, rustic, colonial, and traditional exterior styling in ranch, two-story, and split-level floor plans. In how many ways can a buyer order one of these homes? Sketch a vertical tree diagram for this problem. c) A president and a treasurer are to be chosen from the Science Club consisting of 40 people. How many different choices of officers are possible if (i) (iii) (ii) (iv) A will serve only if he is president; D and E will not serve together? there are no restrictions; B and C will serve together or not at all;

Chapter 28 Solutions

EBK NUMERICAL METHODS FOR ENGINEERS

Ch. 28 - An on is other malbatchre actor can be described...Ch. 28 - The following system is a classic example of stiff...Ch. 28 - 28.13 A biofilm with a thickness grows on the...Ch. 28 - 28.14 The following differential equation...Ch. 28 - Prob. 15PCh. 28 - 28.16 Bacteria growing in a batch reactor utilize...Ch. 28 - 28.17 Perform the same computation for the...Ch. 28 - Perform the same computation for the Lorenz...Ch. 28 - The following equation can be used to model the...Ch. 28 - Perform the same computation as in Prob. 28.19,...Ch. 28 - 28.21 An environmental engineer is interested in...Ch. 28 - 28.22 Population-growth dynamics are important in...Ch. 28 - 28.23 Although the model in Prob. 28.22 works...Ch. 28 - 28.25 A cable is hanging from two supports at A...Ch. 28 - 28.26 The basic differential equation of the...Ch. 28 - 28.27 The basic differential equation of the...Ch. 28 - A pond drains through a pipe, as shown in Fig....Ch. 28 - 28.29 Engineers and scientists use mass-spring...Ch. 28 - Under a number of simplifying assumptions, the...Ch. 28 - 28.31 In Prob. 28.30, a linearized groundwater...Ch. 28 - The Lotka-Volterra equations described in Sec....Ch. 28 - The growth of floating, unicellular algae below a...Ch. 28 - 28.34 The following ODEs have been proposed as a...Ch. 28 - 28.35 Perform the same computation as in the first...Ch. 28 - Solve the ODE in the first part of Sec. 8.3 from...Ch. 28 - 28.37 For a simple RL circuit, Kirchhoff’s voltage...Ch. 28 - In contrast to Prob. 28.37, real resistors may not...Ch. 28 - 28.39 Develop an eigenvalue problem for an LC...Ch. 28 - 28.40 Just as Fourier’s law and the heat balance...Ch. 28 - 28.41 Perform the same computation as in Sec....Ch. 28 - 28.42 The rate of cooling of a body can be...Ch. 28 - The rate of heat flow (conduction) between two...Ch. 28 - Repeat the falling parachutist problem (Example...Ch. 28 - 28.45 Suppose that, after falling for 13 s, the...Ch. 28 - 28.46 The following ordinary differential equation...Ch. 28 - 28.47 A forced damped spring-mass system (Fig....Ch. 28 - 28.48 The temperature distribution in a tapered...Ch. 28 - 28.49 The dynamics of a forced spring-mass-damper...Ch. 28 - The differential equation for the velocity of a...Ch. 28 - 28.51 Two masses are attached to a wall by linear...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY
Solution of Differential Equations and Initial Value Problems; Author: Jefril Amboy;https://www.youtube.com/watch?v=Q68sk7XS-dc;License: Standard YouTube License, CC-BY