Materials for Civil and Construction Engineers (4th Edition)
Materials for Civil and Construction Engineers (4th Edition)
4th Edition
ISBN: 9780134320533
Author: Michael S. Mamlouk, John P. Zaniewski
Publisher: PEARSON
bartleby

Videos

Textbook Question
Book Icon
Chapter 3, Problem 3.20QP

Three steel bars with a diameter of 0.5 in. and carbon contents of 0.2, 0.5 and 0.8%, respectively. The specimens were subjected to tension until rupture. The load versus deformation results were as shown in Table P3.20.

If the gauge length is 2 in., determine the following:

  1. a. The tensile stresses and strains for each specimen at each load increment.
  2. b. Plot stresses versus strains for all specimens on one graph,
  3. c. The proportional limit for each specimen.
  4. d. The 0.2% offset yield strength, for each specimen.
  5. e. The modulus of elasticity for each specimen.
  6. f. The strain at rupture for each specimen.
  7. g. Comment on the effect of increasing the carbon content on the following:
  8. i. Yield strength
  9. ii. Modulus of elasticity
  10. iii. Ductility

TABLE P3.20

Chapter 3, Problem 3.20QP, Three steel bars with a diameter of 0.5 in. and carbon contents of 0.2, 0.5 and 0.8%, respectively.

Blurred answer
Students have asked these similar questions
hree steel bars with a diameter of 25 mm and carbon contents of 0.2, 0.5, and 0.8%, respectively. The specimens were subjected to tension until rupture. The load versus deformation results were as shown in Table P3.19. If the gauge length is 50 mm, determine the following: The tensile stresses and strains for each specimen at each load increment. Plot stresses versus strains for all specimens on one graph. The proportional limit for each specimen. The 0.2% offset yield strength for each specimen. The modulus of elasticity for each specimen. The strain at rupture for each specimen. Comment on the effect of increasing the carbon content on the following: Yield strength ii. Modulus of elasticity iii. Ductility
A tensile test was performed on a metal specimen with a diameter of 1⁄2 inch and a gage length (the length over which the elongation is measured) of 4 inches. The data were plotted on a load-displacement graph, P vs. ∆L. A best-fit line was drawn through the points, and the slope of the straight-line portion was calculated to be P y∆L 5 1392 kips yin. What is the modulus of elasticity?
A round steel bar with a diameter of 12mm and a gauge length of 0.5 mm was subjected to tension to rupture following ASTM E-8 test procedure. The load and deformation data were as shown in Table. Using a spreadsheet program obtain the following: A plot of the stress–strain relationship. Label the axes and show units. A plot of the linear portion of the stress–strain relationship. Determine modulus of elasticity using the best fit approach. Proportional limit. Yield stress. Ultimate strength. When the applied load was 18kN, the diameter was measured as12.7mm Determine Poisson’s ratio. After the rod was broken, the two parts were put together and the diameter at the neck was measured as 10.6 mm. What is the true stress value at fracture? Is the true stress at fracture larger or smaller than the engineering stress at fracture? Why? Do you expect the true strain at fracture to be larger or smaller than the engineering strain at fracture? Why?

Chapter 3 Solutions

Materials for Civil and Construction Engineers (4th Edition)

Ch. 3 - What is the range of thicknesses of cold-formed...Ch. 3 - Why is coil steel used for cold-formed steel...Ch. 3 - If a steel with a 33 ksi yield strength is used...Ch. 3 - Why is reinforcing steel used in concrete? Discuss...Ch. 3 - What is high-performance steel? State two HPS...Ch. 3 - Name three mechanical tests used to measure...Ch. 3 - The following laboratory tests are performed on...Ch. 3 - Sketch the stress-strain behavior of steel, and...Ch. 3 - Three steel bars with a diameter of 25 mm and...Ch. 3 - Three steel bars with a diameter of 0.5 in. and...Ch. 3 - Draw a typical stressstrain relationship for steel...Ch. 3 - Getting measurements from Figure 3.18, determine...Ch. 3 - A steel specimen is tested in tension. The...Ch. 3 - A steel specimen is tested in tension. The...Ch. 3 - A No. 10 steel rebar is tested in tension. By...Ch. 3 - A mild steel specimen originally 300 mm long is...Ch. 3 - A tension stress of 70 ksi was applied on a 12-in....Ch. 3 - A tensile stress is applied along the long axis of...Ch. 3 - A cylindrical steel alloy rod with a 0.5 in....Ch. 3 - A round steel alloy bar with a diameter of 0.75...Ch. 3 - A 19-mm reinforcing steel bar and a gauge length...Ch. 3 - Testing a round steel alloy bar with a diameter of...Ch. 3 - During the tension test on a steel rod within the...Ch. 3 - A grade 36 round steel bar with a diameter of 0.5...Ch. 3 - A high-yield-strength alloy steel bar with a...Ch. 3 - Estimate the cross-sectional area of a 350S125-27...Ch. 3 - An ASTM A615 grade 60 number 10 rebar with a gauge...Ch. 3 - A 32-mm rebar with a gauge length of 200 mm was...Ch. 3 - A steel pipe having a length of 3 ft. an outside...Ch. 3 - A steel pipe having a length of 1 m, an outside...Ch. 3 - A drill rod with a diameter of 10 mm is made of...Ch. 3 - A drill rod with, a diameter of 1/2 in. is made of...Ch. 3 - Prob. 3.43QPCh. 3 - An engineering technician performed a tension test...Ch. 3 - A Charpy V Notch (CVN) test was performed on a...Ch. 3 - Prob. 3.46QPCh. 3 - Prob. 3.47QPCh. 3 - How can the flaws in steel and welds be detected?...Ch. 3 - Determine the welding zone classification of A36...Ch. 3 - Briefly define steel corrosion. What are the four...Ch. 3 - Discuss the main methods used to protect steel...
Knowledge Booster
Background pattern image
Civil Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Steel Design (Activate Learning with these NEW ti...
Civil Engineering
ISBN:9781337094740
Author:Segui, William T.
Publisher:Cengage Learning
Text book image
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning
Text book image
Construction Materials, Methods and Techniques (M...
Civil Engineering
ISBN:9781305086272
Author:William P. Spence, Eva Kultermann
Publisher:Cengage Learning
Material Properties 101; Author: Real Engineering;https://www.youtube.com/watch?v=BHZALtqAjeM;License: Standard YouTube License, CC-BY