Operations Research : Applications and Algorithms
Operations Research : Applications and Algorithms
4th Edition
ISBN: 9780534380588
Author: Wayne L. Winston
Publisher: Brooks Cole
Expert Solution & Answer
Book Icon
Chapter 3, Problem 35RP

Explanation of Solution

 Formulation of Linear Programming (LP):

 Let “x1” be the type 1 layout, “x2” be type 1 layout, and “x3” be type 3 layout.

 The objective is to maximize the profit.

 z=[(net profit)(type 1 layout)+(net profit)(type 2 layout)+(net profit)(type 3 layout)]=50x1+30x2+60x3

 Therefore, the objective function is,

 Maximize, z=50x1+30x2+60x3

 Constraint 1:

 At most, 1000 tulips are available.

 [(tulips used)(type 1 layout)+(tulips used)(type 2 layout)+(tulips used)(type 3 layout)]100030x1+10x2+20x31000

 Constraint 2:

 At most, 800 daffodils are available

Blurred answer
Students have asked these similar questions
Solve the following exercise using jupyter notebook for Python, to find the objective function, variables, constraint matrix and print the graph with the optimal solution. A farm specializes in the production of a special cattle feed, which is a mixture of corn and soybeans. The nutritional composition of these ingredients and their costs are as follows: - Corn contains 0.09 g of protein and 0.02 g of fiber per gram, with a cost of.$0.30 per gram.- Soybeans contain 0.60 g of protein and 0.06 g of fiber per gram, at a cost of $0.90 per gram.0.90 per gram. The dietary needs of the specialty food require a minimum of 30% protein and a maximum of 5% fiber. The farm wishes to determine the optimum ratios of corn and soybeans to produce a feed with minimal costs while maintaining nutritional constraints and ensuring that a minimum of 800 grams of feed is used daily. Restrictions 1. The total amount of feed should be at least 800 grams per day.2. The feed should contain at least 30% protein…
Refer to the following hypothetical situation to come up with a linear programming solution maximizing profit for a local ice-cream shop.   The objective: On average, you get $1 in revenue from every pound of ice cream you sell. You get $5 for every ice cream cake (neglect the cake size here) you sell in the market. You need to bring in as much revenue as you can to keep your shop running on a day-to-day basis. The decisions: You need to figure out what mix of ice creams (per pound) and the number of ice cream cakes to produce each month to maximize total profit. The constraints: It costs $0.5 or 50 cents to produce a pound of ice cream and $4 to produce one ice cream cake (on average). You have a budget of $100 per day to devote to producing new products for sale. You must also store this stuff in your 10 cubic meter freezer. Every pound of ice cream takes up .1 cubic meters once packed, and every cake (on average) takes up 0.25 cubic meters. You can't store these products elsewhere…
Refer to the following hypothetical situation to come up with a linear programming solution maximizing profit for a local ice-cream shop. The objective: On average, you get $1 in revenue from every pound of ice cream you sell. You get $5 for every ice cream cake (neglect the cake size here) you sell in the market. You need to bring in as much revenue as you can to keep your shop running on a day-to-day basis. The decisions: You need to figure out what mix of ice creams (per pound) and the number of ice cream cakes to produce each month to maximize total profit. The constraints: It costs $0.5 or 50 cents to produce a pound of ice cream and $4 to produce one ice cream cake (on average). You have a budget of $100 per day to devote to producing new products for sale. You must also store this stuff in your 10 cubic meter freezer. Every pound of ice cream takes up .1 cubic meters once packed, and every cake (on average) takes up 0.25 cubic meters. You can’t store these products elsewhere…

Chapter 3 Solutions

Operations Research : Applications and Algorithms

Ch. 3.2 - Prob. 6PCh. 3.3 - Prob. 1PCh. 3.3 - Prob. 2PCh. 3.3 - Prob. 3PCh. 3.3 - Prob. 4PCh. 3.3 - Prob. 5PCh. 3.3 - Prob. 6PCh. 3.3 - Prob. 7PCh. 3.3 - Prob. 8PCh. 3.3 - Prob. 9PCh. 3.3 - Prob. 10PCh. 3.4 - Prob. 1PCh. 3.4 - Prob. 2PCh. 3.4 - Prob. 3PCh. 3.4 - Prob. 4PCh. 3.5 - Prob. 1PCh. 3.5 - Prob. 2PCh. 3.5 - Prob. 3PCh. 3.5 - Prob. 4PCh. 3.5 - Prob. 5PCh. 3.5 - Prob. 6PCh. 3.5 - Prob. 7PCh. 3.6 - Prob. 1PCh. 3.6 - Prob. 2PCh. 3.6 - Prob. 3PCh. 3.6 - Prob. 4PCh. 3.6 - Prob. 5PCh. 3.7 - Prob. 1PCh. 3.8 - Prob. 1PCh. 3.8 - Prob. 2PCh. 3.8 - Prob. 3PCh. 3.8 - Prob. 4PCh. 3.8 - Prob. 5PCh. 3.8 - Prob. 6PCh. 3.8 - Prob. 7PCh. 3.8 - Prob. 8PCh. 3.8 - Prob. 9PCh. 3.8 - Prob. 10PCh. 3.8 - Prob. 11PCh. 3.8 - Prob. 12PCh. 3.8 - Prob. 13PCh. 3.8 - Prob. 14PCh. 3.9 - Prob. 1PCh. 3.9 - Prob. 2PCh. 3.9 - Prob. 3PCh. 3.9 - Prob. 4PCh. 3.9 - Prob. 5PCh. 3.9 - Prob. 6PCh. 3.9 - Prob. 7PCh. 3.9 - Prob. 8PCh. 3.9 - Prob. 9PCh. 3.9 - Prob. 10PCh. 3.9 - Prob. 11PCh. 3.9 - Prob. 12PCh. 3.9 - Prob. 13PCh. 3.9 - Prob. 14PCh. 3.10 - Prob. 1PCh. 3.10 - Prob. 2PCh. 3.10 - Prob. 3PCh. 3.10 - Prob. 4PCh. 3.10 - Prob. 5PCh. 3.10 - Prob. 6PCh. 3.10 - Prob. 7PCh. 3.10 - Prob. 8PCh. 3.10 - Prob. 9PCh. 3.11 - Prob. 1PCh. 3.11 - Show that Finco’s objective function may also be...Ch. 3.11 - Prob. 3PCh. 3.11 - Prob. 4PCh. 3.11 - Prob. 7PCh. 3.11 - Prob. 8PCh. 3.11 - Prob. 9PCh. 3.12 - Prob. 2PCh. 3.12 - Prob. 3PCh. 3.12 - Prob. 4PCh. 3 - Prob. 1RPCh. 3 - Prob. 2RPCh. 3 - Prob. 3RPCh. 3 - Prob. 4RPCh. 3 - Prob. 5RPCh. 3 - Prob. 6RPCh. 3 - Prob. 7RPCh. 3 - Prob. 8RPCh. 3 - Prob. 9RPCh. 3 - Prob. 10RPCh. 3 - Prob. 11RPCh. 3 - Prob. 12RPCh. 3 - Prob. 13RPCh. 3 - Prob. 14RPCh. 3 - Prob. 15RPCh. 3 - Prob. 16RPCh. 3 - Prob. 17RPCh. 3 - Prob. 18RPCh. 3 - Prob. 19RPCh. 3 - Prob. 20RPCh. 3 - Prob. 21RPCh. 3 - Prob. 22RPCh. 3 - Prob. 23RPCh. 3 - Prob. 24RPCh. 3 - Prob. 25RPCh. 3 - Prob. 26RPCh. 3 - Prob. 27RPCh. 3 - Prob. 28RPCh. 3 - Prob. 29RPCh. 3 - Prob. 30RPCh. 3 - Graphically find all solutions to the following...Ch. 3 - Prob. 32RPCh. 3 - Prob. 33RPCh. 3 - Prob. 34RPCh. 3 - Prob. 35RPCh. 3 - Prob. 36RPCh. 3 - Prob. 37RPCh. 3 - Prob. 38RPCh. 3 - Prob. 39RPCh. 3 - Prob. 40RPCh. 3 - Prob. 41RPCh. 3 - Prob. 42RPCh. 3 - Prob. 43RPCh. 3 - Prob. 44RPCh. 3 - Prob. 45RPCh. 3 - Prob. 46RPCh. 3 - Prob. 47RPCh. 3 - Prob. 48RPCh. 3 - Prob. 49RPCh. 3 - Prob. 50RPCh. 3 - Prob. 51RPCh. 3 - Prob. 52RPCh. 3 - Prob. 53RPCh. 3 - Prob. 54RPCh. 3 - Prob. 56RPCh. 3 - Prob. 57RPCh. 3 - Prob. 58RPCh. 3 - Prob. 59RPCh. 3 - Prob. 60RPCh. 3 - Prob. 61RPCh. 3 - Prob. 62RPCh. 3 - Prob. 63RP
Knowledge Booster
Background pattern image
Similar questions
Recommended textbooks for you
Text book image
Operations Research : Applications and Algorithms
Computer Science
ISBN:9780534380588
Author:Wayne L. Winston
Publisher:Brooks Cole