Operations Research : Applications and Algorithms
Operations Research : Applications and Algorithms
4th Edition
ISBN: 9780534380588
Author: Wayne L. Winston
Publisher: Brooks Cole
Expert Solution & Answer
Book Icon
Chapter 3, Problem 8RP

Explanation of Solution

Linear Programming (LP) formulation:

  • Given table:
 Steel 1Steel 2
MillCostTime (Minute)CostTime (Minute)
1$1020$1122
2$1224$918
3$1428$1030
  • Consider that xij be the tons of steel “i” manufactures at steel mill “j”, for (i=1,2 and j=1,2,3).
  • The objective is to minimize the cost of manufacturing desired steel.
    • z= ((cost of manufacturing) (tons of steel 1 manufactured in mill 1,2 and 3) + (cost of manufacturing) (tons of steel 2 manufactured in mill 1,2 and 3)
  • Thus the objective function is,
    • Min z= 10x11+12x12+14x13+11x21+9x22+10x23

Constraint 1:

  • At least, 500 tons of steel 1 must be produced each month
  • [tons of steel 1 produced in mill 1+tons of steel 1 produced in mill 2+ tons of steel 1 produced in mill 3]≥500
  • That is, x11+x12+x13500

Constraint 2:

  • At least, 600 tons of steel 2 must be produced each month
  • [tons of steel 2 produced in mill 1+tons of steel 2 produced in mill 2+ tons of steel 2 produced in mill 3]≥600
  • That is, x21+x22+x23600

Constraint 3:

  • At most, 200 hours of blast furnace time are available in each mill 1.
  • [(time required in mill 1) (tons of steel 1 produced in mill 1)+(time required in mill 1) (tons of steel 2 produced in mill1)]≤200
  • That is,

20x11+22x2120020x11+22x21200(60)20x11+22x2112000

Constraint 4:

  • At most, 200 hours of blast furnace time are available in each mill 2.
  • [(time required in mill 2) (tons of steel 1 produced in mill 2)+(time required in mill 2) (tons of steel 2 produced in mill2)]≤200
  • That is,

24x12+18x2220024x12+18x22200(60)24x12+22x2212000

Constraint 5:

  • At most, 200 hours of blast furnace time are available in each mill 3

Blurred answer
Students have asked these similar questions
Vandelay Industries has 275 sales reps in order to sell its latex products, each to be assigned to one of four marketing teams. If the first team is to have four times as many members as the second team and the third team is to have five times as many members as the fourth team, how can the members be distributed among the teams?
A blood bank wants to determine the least expensive way to transport available blood donations from Pittsburgh and Staunton to hospitals in Charleston, Roanoke, Richmond, Norfolk, and Suffolk. The supply and demand for donated blood is shown in the figure along with the unit cost of shipping along each possible arc.  Provide the complete linear programing formulation. Clearly specify decision variables, objective function and constraints. Build a model in Excel and paste a screenshot here. Use “FORMULATEXT” in your model to show calculations. According to Excel Solver, what is the optimal transportation plan for blood bank? What is the minimum total shipping cost?
In the Green Grass shipping model, we currently assume that if a customer’s order is satisfied, it must be satisfied from a single plant. Suppose instead that it can be satisfied from more than one plant. For example, if the company decides to satisfy Dallas’s order, it could ship part of this order from Denver and part from Phoenix (or some other combination of open plants). Continue to assume, however, that the company must satisfy either all or none of each customer’s order. Modify the model appropriately and use Solver to solve it. Does the solution change?

Chapter 3 Solutions

Operations Research : Applications and Algorithms

Ch. 3.2 - Prob. 6PCh. 3.3 - Prob. 1PCh. 3.3 - Prob. 2PCh. 3.3 - Prob. 3PCh. 3.3 - Prob. 4PCh. 3.3 - Prob. 5PCh. 3.3 - Prob. 6PCh. 3.3 - Prob. 7PCh. 3.3 - Prob. 8PCh. 3.3 - Prob. 9PCh. 3.3 - Prob. 10PCh. 3.4 - Prob. 1PCh. 3.4 - Prob. 2PCh. 3.4 - Prob. 3PCh. 3.4 - Prob. 4PCh. 3.5 - Prob. 1PCh. 3.5 - Prob. 2PCh. 3.5 - Prob. 3PCh. 3.5 - Prob. 4PCh. 3.5 - Prob. 5PCh. 3.5 - Prob. 6PCh. 3.5 - Prob. 7PCh. 3.6 - Prob. 1PCh. 3.6 - Prob. 2PCh. 3.6 - Prob. 3PCh. 3.6 - Prob. 4PCh. 3.6 - Prob. 5PCh. 3.7 - Prob. 1PCh. 3.8 - Prob. 1PCh. 3.8 - Prob. 2PCh. 3.8 - Prob. 3PCh. 3.8 - Prob. 4PCh. 3.8 - Prob. 5PCh. 3.8 - Prob. 6PCh. 3.8 - Prob. 7PCh. 3.8 - Prob. 8PCh. 3.8 - Prob. 9PCh. 3.8 - Prob. 10PCh. 3.8 - Prob. 11PCh. 3.8 - Prob. 12PCh. 3.8 - Prob. 13PCh. 3.8 - Prob. 14PCh. 3.9 - Prob. 1PCh. 3.9 - Prob. 2PCh. 3.9 - Prob. 3PCh. 3.9 - Prob. 4PCh. 3.9 - Prob. 5PCh. 3.9 - Prob. 6PCh. 3.9 - Prob. 7PCh. 3.9 - Prob. 8PCh. 3.9 - Prob. 9PCh. 3.9 - Prob. 10PCh. 3.9 - Prob. 11PCh. 3.9 - Prob. 12PCh. 3.9 - Prob. 13PCh. 3.9 - Prob. 14PCh. 3.10 - Prob. 1PCh. 3.10 - Prob. 2PCh. 3.10 - Prob. 3PCh. 3.10 - Prob. 4PCh. 3.10 - Prob. 5PCh. 3.10 - Prob. 6PCh. 3.10 - Prob. 7PCh. 3.10 - Prob. 8PCh. 3.10 - Prob. 9PCh. 3.11 - Prob. 1PCh. 3.11 - Show that Finco’s objective function may also be...Ch. 3.11 - Prob. 3PCh. 3.11 - Prob. 4PCh. 3.11 - Prob. 7PCh. 3.11 - Prob. 8PCh. 3.11 - Prob. 9PCh. 3.12 - Prob. 2PCh. 3.12 - Prob. 3PCh. 3.12 - Prob. 4PCh. 3 - Prob. 1RPCh. 3 - Prob. 2RPCh. 3 - Prob. 3RPCh. 3 - Prob. 4RPCh. 3 - Prob. 5RPCh. 3 - Prob. 6RPCh. 3 - Prob. 7RPCh. 3 - Prob. 8RPCh. 3 - Prob. 9RPCh. 3 - Prob. 10RPCh. 3 - Prob. 11RPCh. 3 - Prob. 12RPCh. 3 - Prob. 13RPCh. 3 - Prob. 14RPCh. 3 - Prob. 15RPCh. 3 - Prob. 16RPCh. 3 - Prob. 17RPCh. 3 - Prob. 18RPCh. 3 - Prob. 19RPCh. 3 - Prob. 20RPCh. 3 - Prob. 21RPCh. 3 - Prob. 22RPCh. 3 - Prob. 23RPCh. 3 - Prob. 24RPCh. 3 - Prob. 25RPCh. 3 - Prob. 26RPCh. 3 - Prob. 27RPCh. 3 - Prob. 28RPCh. 3 - Prob. 29RPCh. 3 - Prob. 30RPCh. 3 - Graphically find all solutions to the following...Ch. 3 - Prob. 32RPCh. 3 - Prob. 33RPCh. 3 - Prob. 34RPCh. 3 - Prob. 35RPCh. 3 - Prob. 36RPCh. 3 - Prob. 37RPCh. 3 - Prob. 38RPCh. 3 - Prob. 39RPCh. 3 - Prob. 40RPCh. 3 - Prob. 41RPCh. 3 - Prob. 42RPCh. 3 - Prob. 43RPCh. 3 - Prob. 44RPCh. 3 - Prob. 45RPCh. 3 - Prob. 46RPCh. 3 - Prob. 47RPCh. 3 - Prob. 48RPCh. 3 - Prob. 49RPCh. 3 - Prob. 50RPCh. 3 - Prob. 51RPCh. 3 - Prob. 52RPCh. 3 - Prob. 53RPCh. 3 - Prob. 54RPCh. 3 - Prob. 56RPCh. 3 - Prob. 57RPCh. 3 - Prob. 58RPCh. 3 - Prob. 59RPCh. 3 - Prob. 60RPCh. 3 - Prob. 61RPCh. 3 - Prob. 62RPCh. 3 - Prob. 63RP
Knowledge Booster
Background pattern image
Similar questions
Recommended textbooks for you
Text book image
Operations Research : Applications and Algorithms
Computer Science
ISBN:9780534380588
Author:Wayne L. Winston
Publisher:Brooks Cole