Introduction to Electrodynamics
Introduction to Electrodynamics
4th Edition
ISBN: 9781108420419
Author: David J. Griffiths
Publisher: Cambridge University Press
Textbook Question
Book Icon
Chapter 3.2, Problem 3.9P

In Ex. 3.2 we assumed that the conducting sphere was grounded ( V = 0 ) . But with the addition of a second image charge, the same basic modelwill handle the case of a sphere at any potential V 0 (relative, of course, to infinity). What charge should you use, and where should you put it? Find the force ofattraction between a point charge q and a neutral conducting sphere.

Blurred answer
07:04
Students have asked these similar questions
A point particle moves in space under the influence of a force derivablefrom a generalized potential of the formU(r, v) = V (r) + σ · L,where r is the radius vector from a fixed point, L is the angular momentumabout that point, and σ is the fixed vector in space. Find the components of the force on the particle in spherical polar  coordinates, on the basis of the equation for the components of the generalized force Qj: Qj = −∂U/∂qj + d/dt (∂U/∂q˙j)
A thin plastic rod of length L has a positive charge Q uniformly distributed along its length. We willcalculate the exact field due to the rod in the next homework set. In this set, we will approximatethe rod as several point sources and develop the Riemann sum as an intermediate step on the wayto writing an integral.For those aiming at a P rating, you may use L = 3.0m , Q = 17 mC, and y = 0.11m to calculate theanswer numerically first and substitute variables for them only as required in the problem statement.For those aiming at an E rating, leave L, Q and y as variables. Substitute numbers only whererequired in the problem statement, and only as a last step
Prove that the relation∂ri/∂qk =∂r˙i/∂q˙kholds if you have one particle system described by spherical polar coordinates: Choose for q1, q2, q3 the parameters r, θ, ϕ.

Chapter 3 Solutions

Introduction to Electrodynamics

Ch. 3.2 - Two semi-infinite grounded conducting planes meet...Ch. 3.2 - Prob. 3.12PCh. 3.3 - Find the potential in the infinite slot of Ex. 3.3...Ch. 3.3 - Prob. 3.14PCh. 3.3 - A rectangular pipe, running parallel to the z-axis...Ch. 3.3 - A cubical box (sides of length a) consists of five...Ch. 3.3 - Prob. 3.17PCh. 3.3 - Prob. 3.18PCh. 3.3 - Prob. 3.19PCh. 3.3 - Suppose the potential V0() at the surface of a...Ch. 3.3 - Prob. 3.21PCh. 3.3 - In Prob. 2.25, you found the potential on the axis...Ch. 3.3 - Prob. 3.23PCh. 3.3 - Prob. 3.24PCh. 3.3 - Find the potential outside an infinitely long...Ch. 3.3 - Prob. 3.26PCh. 3.4 - A sphere of radius R, centered at the origin,...Ch. 3.4 - Prob. 3.28PCh. 3.4 - Four particles (one of charge q, one of charge 3q,...Ch. 3.4 - In Ex. 3.9, we derived the exact potential for a...Ch. 3.4 - Prob. 3.31PCh. 3.4 - Two point charges, 3qand q , arc separated by a...Ch. 3.4 - Prob. 3.33PCh. 3.4 - Three point charges are located as shown in Fig....Ch. 3.4 - A solid sphere, radius R, is centered at the...Ch. 3.4 - Prob. 3.36PCh. 3.4 - Prob. 3.37PCh. 3.4 - Here’s an alternative derivation of Eq. 3.10 (the...Ch. 3.4 - Prob. 3.39PCh. 3.4 - Two long straight wires, carrying opposite uniform...Ch. 3.4 - Prob. 3.41PCh. 3.4 - You can use the superposition principle to combine...Ch. 3.4 - A conducting sphere of radius a, at potential V0 ,...Ch. 3.4 - Prob. 3.44PCh. 3.4 - Prob. 3.45PCh. 3.4 - A thin insulating rod, running from z=a to z=+a ,...Ch. 3.4 - Prob. 3.47PCh. 3.4 - Prob. 3.48PCh. 3.4 - Prob. 3.49PCh. 3.4 - Prob. 3.50PCh. 3.4 - Prob. 3.51PCh. 3.4 - Prob. 3.52PCh. 3.4 - Prob. 3.53PCh. 3.4 - Prob. 3.54PCh. 3.4 - Prob. 3.55PCh. 3.4 - Prob. 3.56PCh. 3.4 - Prob. 3.57PCh. 3.4 - Find the charge density () on the surface of a...
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning