Fundamentals of Heat and Mass Transfer
Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470501979
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 4, Problem 4.1P

In the method of separation of variables (Section 4.2) for two-dimensional, steady-state conduction, the separation constant λ 2 in Equations 4.6 and 4.7 must be a positive constant. Show that a negative or zero value of will result in λ 2 solutions that cannot satisfy the prescribed boundary conditions.

Expert Solution & Answer
Check Mark
To determine

To show: The value of λ2 does not support the given boundary condition.

Explanation of Solution

From the textbook,

Constant of separation is given as,

  d2Xdx2+λ2X=0.....(1)d2Ydy2+λ2Y=0.....(2)

The distribution of temperature can be given as

  θ(x,y)=X(x)Y(y).....(3)

Now,

  Whenλ2=0;Usingequation(1),(2)and(3)X=C1+C2xY=C3+C4yθ(x,y)=(C1+C2x)(C3+C4y)......(4)Applyingboundarycondition:Atx=0;θ(0,y)=(C1+C20)(C3+C4y)=0C1=0Aty=0;θ(x,0)=(0+C2X)(C3+C40)=0C3=0Atx=L;θ(L,0)=(0+C2L)(0+C4y)=0C2=0Aty=W;θ(x,W)=(0+0x)(0+C4W)=101

  Whenλ2<0;

The solution of equation (1) and (2) can be expressed as,

  X=C5eλx+C6e+λxandY=C7cosλy+C8sinλyandθ(x,y)=[C5eλx+C6e+λx][C7cosλy+C8sinλy]Againapplyingboundarycondition:Aty=0;θ(x,0)=[C5eλx+C6e+λx][C7cos0+C8sin0]=0C7=0Atx=0;θ(0,y)=[C5e0+C6e0][0+C8sinλy]=0C8=0

  Now,IfC8=0;Atrivialsolutionresults.or,C5=C6x=L;θ(L,y)=C5[exLe+xL]C8sinλy=0

Therefore,

We obtain the value of C8 or C5 is zero. So, it will generate a trivial solution that does not depend on the value of x and y.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
If the surface of a plane wall with heat conduction coefficient k is under constant heat flux (q0 ") condition at x = 0 and its surface at x = L is at temperature Ts, which of the following is the temperature distribution of this plane wall?
The outer surface of a long cylinder is kept at a constant temperature. There is no heat generation inside the cylinder. Accordingly, which of the following is correct. a.Temperature inside the cylinder increases linearly with the radius b.Temperature inside the cylinder decreases linearly with the radius c.Temperature inside the cylinder is independent of the radius d.Temperature inside the cylinder changes logarithmically with the radius e.none
A heat-conducting rod, that is wrapped in insulation, is constructed with a 0.15-m length of alloy A and a 0.40-m length of alloy B, joined end-to-end. Both pieces have a cross-sectional area of 0.0020 m2. The thermal conductivity of alloy B is known to be 1.8 times as great as that of alloy A. The end of the rod in alloy A is maintained at a temperature of 10 degrees Celcius, and the other end of the rod is maintained at an unknown temperature. When the steady-state flow has been established, the temperature at the junction of the alloys is measured to be 40 degrees Celcius, and the rate of heat flow in the rod is measured at 56 W. What is the temperature of the end of the rod in alloy B.

Chapter 4 Solutions

Fundamentals of Heat and Mass Transfer

Ch. 4 - Determine the heat transfer rate between two...Ch. 4 - A two-dimensional object is subjected to...Ch. 4 - An electrical heater 100 mm long and 5 mm in...Ch. 4 - Two parallel pipelines spaced 0.5 m apart are...Ch. 4 - A small water droplet of diameter D=100m and...Ch. 4 - A tube of diameter 50 mm having a surface...Ch. 4 - Pressurized steam at 450K flows through a long,...Ch. 4 - The temperature distribution in laser-irradiated...Ch. 4 - Hot water at 85°C flows through a thin-walled...Ch. 4 - A furnace of cubical shape, with external...Ch. 4 - Laser beams are used to thermally process...Ch. 4 - A double-glazed window consists of two sheets of...Ch. 4 - A pipeline, used for the transport of crude oil,...Ch. 4 - A long power transmission cable is buried at a...Ch. 4 - A small device is used to measure the surface...Ch. 4 - A cubical glass melting furnace has exterior...Ch. 4 - An aluminum heat sink (k=240W/mK), used to cool an...Ch. 4 - Hot water is transported from a cogeneration power...Ch. 4 - A long constantan wire of 1-mm diameter is butt...Ch. 4 - A hole of diameter D=0.25m is drilled through the...Ch. 4 - In Chapter 3 we that, whenever fins are attached...Ch. 4 - An igloo is built in the shape of a hemisphere,...Ch. 4 - Prob. 4.34PCh. 4 - An electronic device, in the form of a disk 20 mm...Ch. 4 - The elemental unit of an air heater consists of a...Ch. 4 - Prob. 4.37PCh. 4 - Prob. 4.38PCh. 4 - Prob. 4.39PCh. 4 - Prob. 4.40PCh. 4 - One of the strengths of numerical methods is their...Ch. 4 - Determine expressionsfor...Ch. 4 - Consider heat transfer in a one-dimensional...Ch. 4 - In a two-dimensional cylindrical configuration,...Ch. 4 - Upper and lower surfaces of a bus bar are...Ch. 4 - Derive the nodal finite-difference equations for...Ch. 4 - Consider the nodal point 0 located on the boundary...Ch. 4 - Prob. 4.48PCh. 4 - Prob. 4.49PCh. 4 - Consider the network for a two-dimensional system...Ch. 4 - An ancient myth describes how a wooden ship was...Ch. 4 - Consider the square channel shown in the sketch...Ch. 4 - A long conducting rod of rectangular cross section...Ch. 4 - A flue passing hot exhaust gases has a square...Ch. 4 - Steady-state temperatures (K) at three nodal...Ch. 4 - Functionally graded materials are intentionally...Ch. 4 - Steady-state temperatures at selected nodal points...Ch. 4 - Consider an aluminum heat sink (k=240W/mK), such...Ch. 4 - Conduction within relatively complex geometries...Ch. 4 - Prob. 4.60PCh. 4 - The steady-state temperatures (°C) associated with...Ch. 4 - A steady-state, finite-difference analysis has...Ch. 4 - Prob. 4.63PCh. 4 - Prob. 4.64PCh. 4 - Consider a two-dimensional. straight triangular...Ch. 4 - A common arrangement for heating a large surface...Ch. 4 - A long, solid cylinder of diameter D=25mm is...Ch. 4 - Consider Problem 4.69. An engineer desires to...Ch. 4 - Prob. 4.71PCh. 4 - Prob. 4.72PCh. 4 - Prob. 4.73PCh. 4 - Refer to the two-dimensional rectangular plate of...Ch. 4 - The shape factor for conduction through the edge...Ch. 4 - Prob. 4.77PCh. 4 - A simplified representation for cooling in very...Ch. 4 - Prob. 4.84PCh. 4 - A long trapezoidal bar is subjected to uniform...Ch. 4 - Consider the system of Problem 4.54. The interior...Ch. 4 - A long furnace. constructed from refractory brick...Ch. 4 - A hot pipe is embedded eccentrically as shown in a...Ch. 4 - A hot liquid flows along a V-groove in a solid...Ch. 4 - Prob. 4S.5PCh. 4 - Hollow prismatic bars fabricated from plain carbon...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license