Fundamentals of Heat and Mass Transfer

7th Edition

ISBN: 9780470501979

Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine

Publisher: Wiley, John & Sons, Incorporated

*expand_more*

*expand_more*

*format_list_bulleted*

Textbook Question

Chapter 4, Problem 4.14P

Two parallel pipelines spaced 0.5 m apart are buried in soil having a thermal conductivity of

Expert Solution & Answer

Learn your wayIncludes step-by-step video

*schedule*03:41

Students have asked these similar questions

A domestic refrigerator with inner dimensions of 0.7 m by 0.7 m at the base and height 1 m was designed to maintain a set temperature of 6 ˚C. The bodies consist of two 10-mm-thick layers of Aluminium (k = 225 W/mK) separated by a 30 mm polyurethane insulation (k=0.028 W/mK). If the average convection heat transfer coefficient at the inner and outer surfaces are 11.6 W/m2K and 14.5 W/m2K respectively, calculate:
the outer surface temperature of the Aluminum in 0C to 2 decimal places

A domestic refrigerator with inner dimensions of 0.7 m by 0.7 m at the base and height 1 m was designed to maintain a set temperature of 6 ˚C. The bodies consist of two 10-mm-thick layers of Aluminium (k = 225 W/mK) separated by a 30 mm polyurethane insulation (k=0.028 W/mK). If the average convection heat transfer coefficient at the inner and outer surfaces are 11.6 W/m2K and 14.5 W/m2K respectively, calculate:
The total inner surface area in m2 to 2 decimal places
thermodynamics

A domestic refrigerator with inner dimensions of 0.7 m by 0.7 m at the base and height 1 m was designed to maintain a set temperature of 6 ˚C. The bodies consist of two 10-mm-thick layers of Aluminium (k = 225 W/mK) separated by a 30 mm polyurethane insulation (k=0.028 W/mK). If the average convection heat transfer coefficient at the inner and outer surfaces are 11.6 W/m2K and 14.5 W/m2K respectively, calculate:
Total inner surace area in m2 to 2 decimal places.

# Chapter 4 Solutions

Fundamentals of Heat and Mass Transfer

Ch. 4 - In the method of separation of variables (Section...Ch. 4 - A two-dimensional rectangular plate is subjected...Ch. 4 - Consider the two-dimensional rectangular plate of...Ch. 4 - A two-dimensional rectangular plate is subjected...Ch. 4 - A two-dimensional rectangular plate is subjected...Ch. 4 - Using the thermal resistance relations developed...Ch. 4 - Free convection heat transfer is sometimes...Ch. 4 - Consider Problem 4.5 for the case where the plate...Ch. 4 - Prob. 4.9PCh. 4 - Based on the dimensionless conduction heat rates...

Ch. 4 - Determine the heat transfer rate between two...Ch. 4 - A two-dimensional object is subjected to...Ch. 4 - An electrical heater 100 mm long and 5 mm in...Ch. 4 - Two parallel pipelines spaced 0.5 m apart are...Ch. 4 - A small water droplet of diameter D=100m and...Ch. 4 - A tube of diameter 50 mm having a surface...Ch. 4 - Pressurized steam at 450K flows through a long,...Ch. 4 - The temperature distribution in laser-irradiated...Ch. 4 - Hot water at 85°C flows through a thin-walled...Ch. 4 - A furnace of cubical shape, with external...Ch. 4 - Laser beams are used to thermally process...Ch. 4 - A double-glazed window consists of two sheets of...Ch. 4 - A pipeline, used for the transport of crude oil,...Ch. 4 - A long power transmission cable is buried at a...Ch. 4 - A small device is used to measure the surface...Ch. 4 - A cubical glass melting furnace has exterior...Ch. 4 - An aluminum heat sink (k=240W/mK), used to cool an...Ch. 4 - Hot water is transported from a cogeneration power...Ch. 4 - A long constantan wire of 1-mm diameter is butt...Ch. 4 - A hole of diameter D=0.25m is drilled through the...Ch. 4 - In Chapter 3 we that, whenever fins are attached...Ch. 4 - An igloo is built in the shape of a hemisphere,...Ch. 4 - Prob. 4.34PCh. 4 - An electronic device, in the form of a disk 20 mm...Ch. 4 - The elemental unit of an air heater consists of a...Ch. 4 - Prob. 4.37PCh. 4 - Prob. 4.38PCh. 4 - Prob. 4.39PCh. 4 - Prob. 4.40PCh. 4 - One of the strengths of numerical methods is their...Ch. 4 - Determine expressionsfor...Ch. 4 - Consider heat transfer in a one-dimensional...Ch. 4 - In a two-dimensional cylindrical configuration,...Ch. 4 - Upper and lower surfaces of a bus bar are...Ch. 4 - Derive the nodal finite-difference equations for...Ch. 4 - Consider the nodal point 0 located on the boundary...Ch. 4 - Prob. 4.48PCh. 4 - Prob. 4.49PCh. 4 - Consider the network for a two-dimensional system...Ch. 4 - An ancient myth describes how a wooden ship was...Ch. 4 - Consider the square channel shown in the sketch...Ch. 4 - A long conducting rod of rectangular cross section...Ch. 4 - A flue passing hot exhaust gases has a square...Ch. 4 - Steady-state temperatures (K) at three nodal...Ch. 4 - Functionally graded materials are intentionally...Ch. 4 - Steady-state temperatures at selected nodal points...Ch. 4 - Consider an aluminum heat sink (k=240W/mK), such...Ch. 4 - Conduction within relatively complex geometries...Ch. 4 - Prob. 4.60PCh. 4 - The steady-state temperatures (°C) associated with...Ch. 4 - A steady-state, finite-difference analysis has...Ch. 4 - Prob. 4.63PCh. 4 - Prob. 4.64PCh. 4 - Consider a two-dimensional. straight triangular...Ch. 4 - A common arrangement for heating a large surface...Ch. 4 - A long, solid cylinder of diameter D=25mm is...Ch. 4 - Consider Problem 4.69. An engineer desires to...Ch. 4 - Prob. 4.71PCh. 4 - Prob. 4.72PCh. 4 - Prob. 4.73PCh. 4 - Refer to the two-dimensional rectangular plate of...Ch. 4 - The shape factor for conduction through the edge...Ch. 4 - Prob. 4.77PCh. 4 - A simplified representation for cooling in very...Ch. 4 - Prob. 4.84PCh. 4 - A long trapezoidal bar is subjected to uniform...Ch. 4 - Consider the system of Problem 4.54. The interior...Ch. 4 - A long furnace. constructed from refractory brick...Ch. 4 - A hot pipe is embedded eccentrically as shown in a...Ch. 4 - A hot liquid flows along a V-groove in a solid...Ch. 4 - Prob. 4S.5PCh. 4 - Hollow prismatic bars fabricated from plain carbon...

Knowledge Booster

Learn more about

Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions

A domestic refrigerator with inner dimensions of 0.7 m by 0.7 m at the base and height 1 m was designed to maintain a set temperature of 6 ˚C. The bodies consist of two 10-mm-thick layers of Aluminium (k = 225 W/mK) separated by a 30 mm polyurethane insulation (k=0.028 W/mK). If the average convection heat transfer coefficient at the inner and outer surfaces are 11.6 W/m2K and 14.5 W/m2K respectively, calculate
the total resistance(R) for the refrigerator in K/W to 4 decimal places
from thermodynamics

*arrow_forward*

A domestic refrigerator with inner dimensions of 0.7 m by 0.7 m at the base and height 1 m was designed to maintain a set temperature of 6 ˚C. The bodies consist of two 10-mm-thick layers of Aluminium (k = 225 W/mK) separated by a 30 mm polyurethane insulation (k=0.028 W/mK). If the average convection heat transfer coefficient at the inner and outer surfaces are 11.6 W/m2K and 14.5 W/m2K respectively, calculate:
the total resistance(R) for the refrigerator in K/W to 4 decimal places.

*arrow_forward*

Consider a closed cylindrical reactor vessel of diameter D= 1 ft, and length L= 1.5 ft. The surface temperature of the vessel, T1, and the surrounding temperature, T2, are 390 deg. F and 50 deg. F, respectively. The convective heat transfer coefficient, h, between the vessel wall and surrounding fluid is 4.0 Btu/h . ft . ⁰F. Calculate the thermal resistance in ⁰F .h/Btu.

*arrow_forward*

A domestic refrigerator with inner dimensions of 0.7 m by 0.7 m at the base and height 1 m was designed to maintain a set temperature of 6 ˚C. The bodies consist of two 10-mm-thick layers of Aluminium (k = 225 W/mK) separated by a 30 mm polyurethane insulation (k=0.028 W/mK). If the average convection heat transfer coefficient at the inner and outer surfaces are 11.6 W/m2K and 14.5 W/m2K respectively, calculate:
the resistance(R) for the Aluminium near the outer thermal layer in K/W to 8 decimal places
this question is from thermodynamics

*arrow_forward*

A domestic refrigerator with inner dimensions of 0.7 m by 0.7 m at the base and height 1 m was designed to maintain a set temperature of 6 ˚C. The bodies consist of two 10-mm-thick layers of Aluminium (k = 225 W/mK) separated by a 30 mm polyurethane insulation (k=0.028 W/mK). If the average convection heat transfer coefficient at the inner and outer surfaces are 11.6 W/m2K and 14.5 W/m2K respectively, calculate:
the resistance(R) for the Aluminium near the outer thermal layer in K/W to 8 decimal places.

*arrow_forward*

A domestic refrigerator with inner dimensions of 0.7 m by 0.7 m at the base and height 1 m was designed to maintain a set temperature of 6 ˚C. The bodies consist of two 10-mm-thick layers of Aluminium (k = 225 W/mK) separated by a 30 mm polyurethane insulation (k=0.028 W/mK). If the average convection heat transfer coefficient at the inner and outer surfaces are 11.6 W/m2K and 14.5 W/m2K respectively, calculate:
the resistance(R) for the Aluminium near the outer thermal layer in K/W to 8 decimal places.
the resistance(R) for the Aluminium near the inner thermal layer in K/W to 8 decimal places.

*arrow_forward*

A domestic refrigerator with inner dimensions of 0.7 m by 0.7 m at the base and height 1 m was designed to maintain a set temperature of 6 ˚C. The bodies consist of two 10-mm-thick layers of Aluminium (k = 225 W/mK) separated by a 30 mm polyurethane insulation (k=0.028 W/mK). If the average convection heat transfer coefficient at the inner and outer surfaces are 11.6 W/m2K and 14.5 W/m2K respectively, calculate:
the resistance(R) for the Aluminium near the inner thermal layer in K/W to 8 decimal places
thermodynamic

*arrow_forward*

A domestic refrigerator with inner dimensions of 0.7 m by 0.7 m at the base and height 1 m was designed to maintain a set temperature of 6 ˚C. The bodies consist of two 10-mm-thick layers of Aluminium (k = 225 W/mK) separated by a 30 mm polyurethane insulation (k=0.028 W/mK). If the average convection heat transfer coefficient at the inner and outer surfaces are 11.6 W/m2K and 14.5 W/m2K respectively, calculate:
the resistance(R) for the Aluminium near the inner thermal layer in K/W to 8 decimal places
thermodynamics

*arrow_forward*

A domestic refrigerator with inner dimensions of 0.7 m by 0.7 m at the base and height 1 m was designed to maintain a set temperature of 6 ˚C. The bodies consist of two 10-mm-thick layers of Aluminium (k = 225 W/mK) separated by a 30 mm polyurethane insulation (k=0.028 W/mK). If the average convection heat transfer coefficient at the inner and outer surfaces are 11.6 W/m2K and 14.5 W/m2K respectively, calculate:
the resistance(R) for the outer fluid thermal layer in K/W to 5 decimal places.

*arrow_forward*

A domestic refrigerator with inner dimensions of 0.7 m by 0.7 m at the base and height 1 m was designed to maintain a set temperature of 6 ˚C. The bodies consist of two 10-mm-thick layers of Aluminium (k = 225 W/mK) separated by a 30 mm polyurethane insulation (k=0.028 W/mK). If the average convection heat transfer coefficient at the inner and outer surfaces are 11.6 W/m2K and 14.5 W/m2K respectively, calculate:
the resistance(R) for the outer fluid thermal layer in K/W to 5 decimal places
from thermodynamics

*arrow_forward*

A domestic refrigerator with inner dimensions of 0.7 m by 0.7 m at the base and height 1 m was designed to maintain a set temperature of 6 ˚C. The bodies consist of two 10-mm-thick layers of Aluminium (k = 225 W/mK) separated by a 30 mm polyurethane insulation (k=0.028 W/mK). If the average convection heat transfer coefficient at the inner and outer surfaces are 11.6 W/m2K and 14.5 W/m2K respectively, calculate:
the steady rate of heat transfer from the interior to maintain the specified temperature in the kitchen at 25 ˚C in W to 2 decimal places.

*arrow_forward*

A domestic refrigerator with inner dimensions of 0.7 m by 0.7 m at the base and height 1 m was designed to maintain a set temperature of 6 ˚C. The bodies consist of two 10-mm-thick layers of Aluminium (k = 225 W/mK) separated by a 30 mm polyurethane insulation (k=0.028 W/mK). If the average convection heat transfer coefficient at the inner and outer surfaces are 11.6 W/m2K and 14.5 W/m2K respectively, calculate:
the steady rate of heat transfer from the interior to maintain the specified temperature in the kitchen at 25 ˚C in W to 2 decimal places.
thermodynamics

*arrow_forward*

*arrow_back_ios*

- SEE MORE QUESTIONS

*arrow_forward_ios*

Recommended textbooks for you

Principles of Heat Transfer (Activate Learning wi...

Mechanical Engineering

ISBN:9781305387102

Author:Kreith, Frank; Manglik, Raj M.

Publisher:Cengage Learning

Principles of Heat Transfer (Activate Learning wi...

Mechanical Engineering

ISBN:9781305387102

Author:Kreith, Frank; Manglik, Raj M.

Publisher:Cengage Learning

Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license