Physics for Scientists and Engineers with Modern Physics
Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN: 9781337553292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
Question
Book Icon
Chapter 40, Problem 33AP

(a)

To determine

Transmission probability for quantum mechanical tunnelling of electron.

(b)

To determine

Transmission probability for quantum mechanical tunnelling of electron with energy deficit of 1.00eV.

(c)

To determine

Transmission probability for quantum mechanical tunnelling of alpha particle with energy deficit of 1.00MeV.

(d)

To determine

Transmission probability for quantum mechanical tunnelling of a bowling ball with energy deficit of 1.00J.

Blurred answer
Students have asked these similar questions
Calculate the transmission probability for quantum-mechanical tunneling in each of the following cases. (a) An electron with an energy deficit of U - E= 0.010 0 eV is incident on a square barrier of width L = 0.100 nm. (b) An electron with an energy deficit of 1.00 eV is incident on the same barrier. (c) An alpha particle (mass 6.64 × 10-27 kg) with an energy deficit of 1.00 MeV is incident on a square barrier of width 1.00 fm. (d) An 8.00-kg bowling ball withan energy deficit of 1.00 J is incident on a square barrier of width 2.00 cm.
An electron having total energy E = 4.50 eV approaches a rectangular energy barrier with U = 5.00 eV and L = 950 pm as shown. Classically, the electron cannot pass through the barrier because E < U. Quantum- mechanically, however, the probability of tunneling is not zero. (a) Calculate this probability, which is the transmission coefficient. (b) To what value would the width L of the potential barrier have to be increased for the chance of an incident 4.50-eV electron tunneling through the barrier to be one in one million?
The wavefunction for a quantum particle tunnelling through a potential barrier of thickness L has the form ψ(x) = Ae−Cx in the classically forbidden region where A is a constant and C is given by C^2 = 2m(U − E) /h_bar^2 .   (a) Show that this wavefunction is a solution to Schrodinger’s Equation.   (b) Why is the probability of tunneling through the barrier proportional to e ^−2CL?
Knowledge Booster
Background pattern image
Similar questions
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning