Elementary Principles of Chemical Processes, Binder Ready Version
Elementary Principles of Chemical Processes, Binder Ready Version
4th Edition
ISBN: 9781118431221
Author: Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher: WILEY
bartleby

Videos

Textbook Question
100%
Chapter 8, Problem 8.1P

8.1. The specific internal energy of formaldehyde (HCHO) vapor at 1 atm and moderate temperatures is given by the formula

   U ^ ( J / m o l ) = 25.96 T + 0.02134 T 2

where T is in °C.

Calculate the specific internal energies of formaldehyde vapor at 0°C and 200°C. What reference temperature was used to generate the given expression for U ^

  1. ?
  2. The value of U calculated for 200°C is not the true value of the specific internal energy of formaldehyde vapor at this condition. Why not? (Him: Refer back to Section 7.5a.) Briefly state the physical significance of the calculated quantity.
  3. Use the closed system energy balance to calculate the heat (J) required to raise the temperature of 3.0 mol HCHO at constant volume from 0°C to 200°C. List all of your assumptions.
  4. From the definition of heat capacity at constant volume, derive a formula for C v ( T ) [ J / m o l ° C ] .

Then use this formula and Equation 8.3-6 to calculate the heat (J) required to raise the temperature of 3.0 mol of HCHO(v) at constant volume from 0°C to 200°C. [You should get the same result you got in Part (c).]

Expert Solution
Check Mark
Interpretation Introduction

(a)

Interpretation:

The specific internal energies of formaldehyde vapor and the temperature should be calculated.

Concept introduction:

In the thermodynamic closed system, the exchange of matter does not take place but heat can be exchanged and thus, the work done by the system is considered to be zero.

The specific internal energy of formaldehyde Vapor is given by:

UT=25.96T+0.02134T2

Where T= temperature of formaldehyde

Answer to Problem 8.1P

0J/mol, 6046J/mol and 00C.

Explanation of Solution

Calculate the internal energy of formaldehyde at 0 and 200° C as,

UT=25.96T+0.02134T2

U00C=25.960+0.0213402=0J/mol

U2000C=25.96200+0.021342002=6046J/mol

Since the reference temperature is that temperature at which internal energy becomes zero.

The reference temperature is 00C.

Expert Solution
Check Mark
Interpretation Introduction

(b)

Interpretation:

The importance of calculated quantity should be explained.

Concept introduction:

Thermodynamic closed system in which no exchange of matter takes place but the exchange of heat occurs then the work done by the system is considered to be zero.

The specific internal energy of formaldehyde Vapor is given by:

UT=25.96T+0.02134T2

Where T= temperature of formaldehyde

Explanation of Solution

The calculation of the absolute value of internal energy for a process material is not possible. However, it is possible to estimate the change in internal energy for a defined change of state like solid, liquid or gas.

In part (a) calculation, the change in internal energy is calculated with references to 0 °C.

Expert Solution
Check Mark
Interpretation Introduction

(c)

Interpretation:

The heat required to raise the temperature for the given range by stating the assumptions should be calculated.

Concept introduction:

Thermodynamic closed system in which no exchange of matter takes place, but the exchange of heat occurs then the work done by the system is zero.

The specific internal energy of formaldehyde Vapor is given by:

UT=25.96T+0.02134T2

Where T= temperature of formaldehyde

Answer to Problem 8.1P

18137J and assumptions of a closed system are as follows:

  • Work done by the system is zero.
  • Potential energy drop is zero.
  • Kinetic energy drop is also 0.
  • No moving parts in the system.
  • There is no energy transfer to and from the system

Explanation of Solution

From total energy balance,

Q+W=ΔU+ΔEK+ΔEP

Since the kinetic energy, potential energy and the work done are zero.

Q+0=ΔU+0+0

Using part (a),

ΔU=U1000CU00C=6046-0J/mol=6046J/mol

Therefore, total energy for the system is,

ΔU=6046J/mol3mol=18137J

Assumptions.

  • Work done by the system is zero.
  • Potential energy drop is zero.
  • Kinetic energy drop is also 0.
  • No moving parts in the system.
  • There is no energy transfer to and from the system
Expert Solution
Check Mark
Interpretation Introduction

(d)

Interpretation:

A formula for Cv should be derived and it should be used to calculate the heat required for the given case.

Concept introduction:

Thermodynamic closed system in which no exchange of matter takes place, but the exchange of heat occurs then the work done by the system is zero.

The specific internal energy of formaldehyde Vapor is given by:

UT=25.96T+0.02134T2

Where T= temperature of formaldehyde

Answer to Problem 8.1P

dUdT=Cv and 18137J.

Explanation of Solution

Use the given equation,

ΔU=T1T2CvdT

Differentiate both sides,

dΔUdT=ddTT1T2CvdT

Rearranging the above equation,

dUdT=Cv

At constant volume,

CV=dUdTv

Apply the given values as,

CV=dUdT=d25.96T+0.04268T2dTJ/mol0C

Differentiate the equation as,

CV=25.96+0.04268TJ/mol0C

Finally, calculate the change of moles for the given case as,

ΔU=nHCHO020025.96+0.04268TdT=nHCHO25.96T+0.04268T2/20200=3mol25.960200oC+0.0426802000C2=18137J

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
02:57

Chapter 8 Solutions

Elementary Principles of Chemical Processes, Binder Ready Version

Ch. 8 - Chlorine gas is to be heated front 120°C and 1 atm...Ch. 8 - Prob. 8.12PCh. 8 - Prob. 8.13PCh. 8 - Prob. 8.14PCh. 8 - Use the enthalpy function of APEx to calculate...Ch. 8 - A stream of carbon monoxide flowing at 300 kg/min...Ch. 8 - Prob. 8.17PCh. 8 - Prob. 8.18PCh. 8 - Prob. 8.19PCh. 8 - Prob. 8.20PCh. 8 - Prob. 8.21PCh. 8 - Calculate the heat transfer (kJ) required to cool...Ch. 8 - Twenty liters of liquid n-propyl benzoate...Ch. 8 - Prob. 8.24PCh. 8 - Prob. 8.25PCh. 8 - Prob. 8.26PCh. 8 - A fuel gas containing 95 mole% methane and the...Ch. 8 - Prob. 8.28PCh. 8 - Prob. 8.29PCh. 8 - Ever wonder why espresso costs much more per cup...Ch. 8 - Prob. 8.31PCh. 8 - Saturated steam at 300°C is used to heat a...Ch. 8 - Pure ethane is burned completely with preheated...Ch. 8 - An adiabatic membrane separation unit is used to...Ch. 8 - A gas containing water vapor has a dry-basis...Ch. 8 - Prob. 8.36PCh. 8 - Prob. 8.37PCh. 8 - Prob. 8.38PCh. 8 - In the manufacture of nitric acid, ammonia and...Ch. 8 - A natural gas containing 95 mole% methane and the...Ch. 8 - The heat capacity at constant pressure of a gas is...Ch. 8 - Prob. 8.42PCh. 8 - Prob. 8.43PCh. 8 - Prob. 8.44PCh. 8 - Calculate the heat of vaporization of water...Ch. 8 - Polyvinylpyrrolidone (PVP) is a polymer product...Ch. 8 - Benzene vapor at 480°C is cooled and converted to...Ch. 8 - Prob. 8.48PCh. 8 - Prob. 8.49PCh. 8 - Prob. 8.50PCh. 8 - Prob. 8.51PCh. 8 - Prob. 8.52PCh. 8 - Prob. 8.53PCh. 8 - A stream of pure cyclopentane vapor flowing at a...Ch. 8 - Prob. 8.55PCh. 8 - Prob. 8.57PCh. 8 - A gas stream containing n-hexane in nitrogen with...Ch. 8 - A mixture of n-hexane vapor and air leaves a...Ch. 8 - An equimolar liquid mixture of n-pentane and...Ch. 8 - A liquid stream containing 50.0 mole% benzene and...Ch. 8 - Prob. 8.63PCh. 8 - Prob. 8.64PCh. 8 - Prob. 8.65PCh. 8 - Prob. 8.66PCh. 8 - An aqueous slurry at 30°C containing 20.0 wt%...Ch. 8 - Prob. 8.68PCh. 8 - Prob. 8.69PCh. 8 - A liquid is placed in a wcll-insulatcd container,...Ch. 8 - A small pharmaceutical firm plans to manufacture a...Ch. 8 - Freeze drying is a technique for dehydrating...Ch. 8 - The manufacturers of a new oatmeal product want to...Ch. 8 - Freeze concentration is used to produce a...Ch. 8 - A mixture containing 35.0 mole% n-butane and the...Ch. 8 - A liquid mixture of benzene and toluene containing...Ch. 8 - Prob. 8.79PCh. 8 - An outside-air sample is taken on a day when the...Ch. 8 - Prob. 8.83PCh. 8 - Prob. 8.84PCh. 8 - Prob. 8.85PCh. 8 - Wet solids pass through a continuous dryer. Hot...Ch. 8 - Prob. 8.88PCh. 8 - Prob. 8.93PCh. 8 - The heat of solution of ammonia in water at 1 atm...Ch. 8 - Prob. 8.96PCh. 8 - Sodium hydroxide is dissolved in enough water to...Ch. 8 - A sulfuric acid solution is labeled 8 N (where 1 N...Ch. 8 - You are about to dilute 2.00 mol of 100% sulfuric...Ch. 8 - Prob. 8.100PCh. 8 - A 0.1 mole% caustic soda (NaOH) solution is to be...Ch. 8 - Prob. 8.102PCh. 8 - Ortho-phosphoric acid (H3PO4) is produced as a...Ch. 8 - Prob. 8.104PCh. 8 - Fifty milliliters of 100% H2SO4 at 25°C and 84.2...Ch. 8 - Prob. 8.106PCh. 8 - One g-mole of pure liquid sulfuric acid at...Ch. 8 - Prob. 8.108PCh. 8 - Prob. 8.110PCh. 8 - Prob. 8.111PCh. 8 - Taking as references pure liquid sulfuric acid at...Ch. 8 - Prob. 8.113PCh. 8 - An NH3-H2O mixture containing 60wt% NH3 is brought...Ch. 8 - Prob. 8.115P

Additional Engineering Textbook Solutions

Find more solutions based on key concepts
Knowledge Booster
Chemical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
  • Introduction to Chemical Engineering Thermodynami...
    Chemical Engineering
    ISBN:9781259696527
    Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
    Publisher:McGraw-Hill Education
    Elementary Principles of Chemical Processes, Bind...
    Chemical Engineering
    ISBN:9781118431221
    Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
    Publisher:WILEY
    Elements of Chemical Reaction Engineering (5th Ed...
    Chemical Engineering
    ISBN:9780133887518
    Author:H. Scott Fogler
    Publisher:Prentice Hall
  • Process Dynamics and Control, 4e
    Chemical Engineering
    ISBN:9781119285915
    Author:Seborg
    Publisher:WILEY
    Industrial Plastics: Theory and Applications
    Chemical Engineering
    ISBN:9781285061238
    Author:Lokensgard, Erik
    Publisher:Delmar Cengage Learning
    Unit Operations of Chemical Engineering
    Chemical Engineering
    ISBN:9780072848236
    Author:Warren McCabe, Julian C. Smith, Peter Harriott
    Publisher:McGraw-Hill Companies, The
  • Introduction to Chemical Engineering Thermodynami...
    Chemical Engineering
    ISBN:9781259696527
    Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
    Publisher:McGraw-Hill Education
    Elementary Principles of Chemical Processes, Bind...
    Chemical Engineering
    ISBN:9781118431221
    Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
    Publisher:WILEY
    Elements of Chemical Reaction Engineering (5th Ed...
    Chemical Engineering
    ISBN:9780133887518
    Author:H. Scott Fogler
    Publisher:Prentice Hall
    Process Dynamics and Control, 4e
    Chemical Engineering
    ISBN:9781119285915
    Author:Seborg
    Publisher:WILEY
    Industrial Plastics: Theory and Applications
    Chemical Engineering
    ISBN:9781285061238
    Author:Lokensgard, Erik
    Publisher:Delmar Cengage Learning
    Unit Operations of Chemical Engineering
    Chemical Engineering
    ISBN:9780072848236
    Author:Warren McCabe, Julian C. Smith, Peter Harriott
    Publisher:McGraw-Hill Companies, The
    Mod-01 Lec-23 Degrees of freedom analysis; Author: nptelhrd;https://www.youtube.com/watch?v=c4h85JjrkzQ;License: Standard YouTube License, CC-BY
    Introduction to Degrees of Freedom; Author: LearnChemE;https://www.youtube.com/watch?v=tW1ft4y5fQY;License: Standard Youtube License