   Chapter 10, Problem 60AP

Chapter
Section
Textbook Problem

A 20.0-L tank of carbon dioxide gas (CO2) is at a pressure of 9.50 × 105 Pa and temperature of 19.0°C (a) Calculate the temperature of the gas in Kelvin. (b) Use the ideal gas law to calculate the number of moles of gas in the tank. (c) Use the periodic table to compute the molecular weight of carbon dioxide, expressing it in grams per mole. (d) Obtain the number of grains of carbon dioxide in the tank. (e) A fire breaks out, raising the ambient temperature by 224.0 K while 82.0 g of gas leak out of the tank. Calculate the new temperature and the number of moles of gas remaining in the tank. (f) Using a technique analogous to that in Example 10.6b, find a symbolic expression for the final pressure, neglecting the change in volume of the tank. (g) Calculate the final pressure in the tank as a result of the fire and leakage.

(a)

To determine
The temperature in Kelvin scale.

Explanation

Given info:

Volume of the tank (V) is 20.0 L.

The temperature (T) is 19.0οC .

The pressure (P) is 9.50×105Pa

Formula to calculate the temperature in Kelvin scale is,

TK=(T+273.15)K

Substitute 19

(b)

To determine
The number of moles of gas.

(c)

To determine
The molecular weight of carbon dioxide (M).

(d)

To determine
The number of grams of carbon dioxide (m).

(e)

To determine
The new temperature and number of moles of gas after the leakage.

(f)

To determine
The expression for final pressure.

(g)

To determine
The final pressure in the tank as the result of fire and leakage.

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started 