menu
bartleby
search
close search
Hit Return to see all results
close solutoin list

One of the most challenging parts of solving acid–base problems is writing out the correct equation. When a strong acid or a strong base is added to solutions, they are great at what they do, and we always react them first. If a strong acid is added to a buffer, what reacts with the H + from the strong acid and what are the products? If a strong base is added to a buffer, what reacts with the OH − from the strong base and what are the products? Problems involving the reaction of a strong acid or strong base are assumed to be stoichiometry problems and not equilibrium problems. What is assumed when a strong acid or strong base reacts to make it a stoichiometry problem?

BuyFindarrow_forward

Chemistry: An Atoms First Approach

2nd Edition
Steven S. Zumdahl + 1 other
Publisher: Cengage Learning
ISBN: 9781305079243

Solutions

Chapter
Section
BuyFindarrow_forward

Chemistry: An Atoms First Approach

2nd Edition
Steven S. Zumdahl + 1 other
Publisher: Cengage Learning
ISBN: 9781305079243
Chapter 14, Problem 3RQ
Textbook Problem
33 views

One of the most challenging parts of solving acid–base problems is writing out the correct equation. When a strong acid or a strong base is added to solutions, they are great at what they do, and we always react them first. If a strong acid is added to a buffer, what reacts with the H+ from the strong acid and what are the products? If a strong base is added to a buffer, what reacts with the OH from the strong base and what are the products? Problems involving the reaction of a strong acid or strong base are assumed to be stoichiometry problems and not equilibrium problems. What is assumed when a strong acid or strong base reacts to make it a stoichiometry problem?

Interpretation Introduction

Interpretation: The information about solving the acid–base problem and problems involving reaction of strong acid and strong base is given. The substance that reacts with H+ and the products formed on addition of strong acid to a buffer and; the substance that reacts with OH and the products formed on addition of strong base to a buffer and the assumption that is made when a strong acid or strong base reacts to make it a stoichiometric problem is to be stated.

Concept introduction: The solution whose pH does not change when a small quantity of an acid or a base is added to it is called a buffer solution. Their pH is not changed when the acid or base is added to it.

To determine: The substance that reacts with H+ and the products formed on addition of strong acid to a buffer and; the substance that reacts with OH and the products formed on addition of strong base to a buffer and the assumption that is made when a strong acid or strong base reacts to make it a stoichiometric problem.

Explanation of Solution

Explanation

In a buffer solution, on addition of strong acid the formation of more reactant occurs while on addition of strong base the reaction goes in forward direction and this helps to keep the pH of the buffer almost constant.

Let a weak acid HA is taken. On dissociation it leads to the formation of proton and its conjugate base. The reaction is shown as,

HAH++A

If some strong acid is added to the above buffered solution, then there will occur an increased concentration of H+ due to complete dissociation of strong acid. The weak base will combine with the proton from strong acid and this leads to the formation of weak acid. Otherwise the pH of the buffer solution will change if these protons from strong acid are not consumed.

Explanation

In a buffer solution, on addition of strong base the reaction goes in forward direction and this helps to keep the pH of the buffer almost constant.

Let a weak acid HA is taken. On dissociation it leads to the formation of proton and its conjugate base. The reaction is shown as,

HAH++A

When a strong base is added to the buffer solution then the concentration of hydroxide ions increases

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

Chapter 14 Solutions

Chemistry: An Atoms First Approach
Show all chapter solutions
add
Ch. 14 - What are the major species in solution after...Ch. 14 - A friend asks the following: Consider a buffered...Ch. 14 - Mixing together solutions of acetic acid and...Ch. 14 - Could a buffered solution be made by mixing...Ch. 14 - Sketch two pH curves, one for the titration of a...Ch. 14 - Sketch a pH curve for the titration of a weak acid...Ch. 14 - You have a solution of the weak acid HA and add...Ch. 14 - You have a solution of the weak acid HA and add...Ch. 14 - The common ion effect for weak acids is to...Ch. 14 - Consider a buffer solution where [weak acid] ...Ch. 14 - A best buffer has about equal quantities of weak...Ch. 14 - Consider the following pH curves for 100.0 mL of...Ch. 14 - An acid is titrated with NaOH. The following...Ch. 14 - Consider the following four titrations. i. 100.0...Ch. 14 - Figure 14-4 shows the pH curves for the titrations...Ch. 14 - Acidbase indicators mark the end point of...Ch. 14 - How many of the following are buffered solutions?...Ch. 14 - Which of the following can be classified as buffer...Ch. 14 - A certain buffer is made by dissolving NaHCO3 and...Ch. 14 - A buffer is prepared by dissolving HONH2 and...Ch. 14 - Calculate the pH of each of the following...Ch. 14 - Calculate the pH of each of the following...Ch. 14 - Compare the percent dissociation of the acid in...Ch. 14 - Compare the percent ionization of the base in...Ch. 14 - Calculate the pH after 0.020 mole of HCl is added...Ch. 14 - Calculate the pH after 0.020 mole of HCl is added...Ch. 14 - Calculate the pH after 0.020 mole of NaOH is added...Ch. 14 - Calculate the pH after 0.020 mole of NaOH is added...Ch. 14 - Which of the solutions in Exercise 21 shows the...Ch. 14 - Which of the solutions in Exercise 22 is a...Ch. 14 - Calculate the pH of a solution that is 1.00 M HNO2...Ch. 14 - Calculate the pH of a solution that is 0.60 M HF...Ch. 14 - Calculate the pH after 0.10 mole of NaOH is added...Ch. 14 - Calculate the pH after 0.10 mole of NaOH is added...Ch. 14 - Calculate the pH of each of the following buffered...Ch. 14 - Calculate the pH of each of the following buffered...Ch. 14 - Calculate the pH of a buffered solution prepared...Ch. 14 - A buffered solution is made by adding 50.0 g NH4Cl...Ch. 14 - Calculate the pH after 0.010 mole of gaseous HCl...Ch. 14 - An aqueous solution contains dissolved C6H5NH3Cl...Ch. 14 - Calculate the mass of sodium acetate that must be...Ch. 14 - What volumes of 0.50 M HNO2 and 0.50 M NaNO2 must...Ch. 14 - Consider a solution that contains both C5H5N and...Ch. 14 - Calculate the ratio [NH3]/[NH4+] in...Ch. 14 - Carbonate buffers are important in regulating the...Ch. 14 - When a person exercises, muscle contractions...Ch. 14 - Consider the acids in Table 13-2. Which acid would...Ch. 14 - Consider the bases in Table 13-3. Which base would...Ch. 14 - Calculate the pH of a solution that is 0.40 M...Ch. 14 - Calculate the pH of a solution that is 0.20 M HOCl...Ch. 14 - Which of the following mixtures would result in...Ch. 14 - Which of the following mixtures would result in a...Ch. 14 - What quantity (moles) of NaOH must be added to 1.0...Ch. 14 - Calculate the number of moles of HCl(g) that must...Ch. 14 - Consider the titration of a generic weak acid HA...Ch. 14 - Sketch the titration curve for the titration of a...Ch. 14 - Consider the titration of 40.0 mL of 0.200 M HClO4...Ch. 14 - Consider the titration of 80.0 mL of 0.100 M...Ch. 14 - Consider the titration of 100.0 mL of 0.200 M...Ch. 14 - Consider the titration of 100.0 mL of 0.100 M...Ch. 14 - Lactic acid is a common by-product of cellular...Ch. 14 - Repeat the procedure in Exercise 61, but for the...Ch. 14 - Repeat the procedure in Exercise 61, but for the...Ch. 14 - Repeat the procedure in Exercise 61, but for the...Ch. 14 - Calculate the pH at the halfway point and at the...Ch. 14 - In the titration of 50.0 mL of 1.0 M methylamine,...Ch. 14 - You have 75.0 mL of 0.10 M HA. After adding 30.0...Ch. 14 - A student dissolves 0.0100 mole of an unknown weak...Ch. 14 - Two drops of indicator HIn (Ka = 1.0 109), where...Ch. 14 - Methyl red has the following structure: It...Ch. 14 - Potassium hydrogen phthalate, known as KHP (molar...Ch. 14 - A certain indicator HIn has a pKa of 3.00 and a...Ch. 14 - Which of the indicators in Fig. 14-8 could be used...Ch. 14 - Which of the indicators in Fig. 14-8 could be used...Ch. 14 - Which of the indicators in Fig. 14-8 could be used...Ch. 14 - Which of the indicators in Fig. 14-8 could be used...Ch. 14 - Estimate the pH of a solution in which bromcresol...Ch. 14 - Estimate the pH of a solution in which crystal...Ch. 14 - A solution has a pH of 7.0. What would be the...Ch. 14 - A solution has a pH of 4.5. What would be the...Ch. 14 - Derive an equation analogous to the...Ch. 14 - a. Calculate the pH of a buffered solution that is...Ch. 14 - Tris(hydroxymethyl)aminomethane, commonly called...Ch. 14 - You make 1.00 L of a buffered solution (pH = 4.00)...Ch. 14 - You have the following reagents on hand: Solids...Ch. 14 - Amino acids are the building blocks for all...Ch. 14 - Phosphate buffers are important in regulating the...Ch. 14 - What quantity (moles) of HCl(g) must be added to...Ch. 14 - Calculate the value of the equilibrium constant...Ch. 14 - The following plot shows the pH curves for the...Ch. 14 - Calculate the volume of 1.50 102 M NaOH that must...Ch. 14 - Repeat the procedure in Exercise 61, but for the...Ch. 14 - A certain acetic acid solution has pH = 2.68....Ch. 14 - A 0.210-g sample of an acid (molar mass = 192...Ch. 14 - The active ingredient in aspirin is...Ch. 14 - One method for determining the purity of aspirin...Ch. 14 - A student intends to titrate a solution of a weak...Ch. 14 - A student titrates an unknown weak acid, HA, to a...Ch. 14 - A sample of a certain monoprotic weak acid was...Ch. 14 - Consider 1.0 L of a solution that is 0.85 M HOC6H5...Ch. 14 - What concentration of NH4Cl is necessary to buffer...Ch. 14 - Consider the following acids and bases: HCO2H Ka =...Ch. 14 - Consider a buffered solution containing CH3NH3Cl...Ch. 14 - Consider the titration of 150.0 mL of 0.100 M HI...Ch. 14 - Consider the titration of 100.0 mL of 0.100 M HCN...Ch. 14 - Consider the titration of 100.0 mL of 0.200 M...Ch. 14 - Consider the following four titrations (iiv): i....Ch. 14 - Another way to treat data from a pH titration is...Ch. 14 - A buffer is made using 45.0 mL of 0.750 M HC3H5O2...Ch. 14 - A 0.400-M solution of ammonia was titrated with...Ch. 14 - What volume of 0.0100 M NaOH must be added to 1.00...Ch. 14 - Consider a solution formed by mixing 50.0 mL of...Ch. 14 - When a diprotic acid, H2A, is titrated with NaOH,...Ch. 14 - Consider the following two acids: In two separate...Ch. 14 - The titration of Na2CO3 with HCl bas the following...Ch. 14 - Consider the titration curve in Exercise 115 for...Ch. 14 - A few drops of each of the indicators shown in the...Ch. 14 - Malonic acid (HO2CCH2CO2H) is a diprotic acid. In...Ch. 14 - A buffer solution is prepared by mixing 75.0 mL of...Ch. 14 - A 10.00-g sample of the ionic compound NaA, where...Ch. 14 - Calculate the pH of a solution prepared by mixing...Ch. 14 - Consider a solution prepared by mixing the...

Additional Science Textbook Solutions

Find more solutions based on key concepts
Show solutions add
Which of the following is an example of a processed food? a. carrots b. bread c. nuts d. watermelon

Nutrition: Concepts and Controversies - Standalone book (MindTap Course List)

What is the role of helicase in transcription?

Introduction to General, Organic and Biochemistry

23. Name each compound:

Chemistry In Focus

What happens to the energy of light when light is absorbed in seawater?

Oceanography: An Invitation To Marine Science, Loose-leaf Versin

(a) A wry powerful vacuum cleaner has a hose 2.86 cm in diameter. With the end of the hose placed perpendicular...

Physics for Scientists and Engineers, Technology Update (No access codes included)