Introduction to Heat Transfer
Introduction to Heat Transfer
6th Edition
ISBN: 9780470501962
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
bartleby

Videos

Textbook Question
Book Icon
Chapter 2, Problem 2.53P

A thin electrical heater dissipating 4000 W/m 2 is sandwiched between two 25-mm-thick plates whose exposed surfaces experience convection with a fluid for which T = 20 ° C and h = 400 W/m 2 K . The thermophysical properties of the plate material are ρ = 2500 kg/m 3 , c = 700 J/kg K, and k = 5 W/m K .

Chapter 2, Problem 2.53P, A thin electrical heater dissipating 4000W/m2 is sandwiched between two 25-mm-thick plates whose

  1. On T x coordinates, sketch the steady-state temperature distribution for L x L . Calculate values of the temperatures at the surfaces, x = ± L , and the midpoint, x = 0. Label this distribution as Case 1, and explain its salient features.
  2. Consider conditions for which there is a loss of coolant and existence of a nearly adiabatic condition on the x = + L surface. On the T x coordinates used for part (a), sketch the corresponding steady-state temperature distribution and indicate the temperatures at x = 0 , ± L . Label the distribution as Case 2, and explain its key features.
  3. With the system operating as described in part (b), the surface x = L also experiences a sudden loss of coolant. dangerous situation goes undetected for 15 min, at which time the power to the heater is deactivated. Assuming no heat losses from the surfaces of the plates, what is the eventual t , uniform, steady-state temperature distribution in the plates? Show this distribution as Case 3 on your sketch, and explain its key features. Hint: Apply the conservation of energy requirement on a time-interval basis, Eq. 1.12b, for the initial and final conditions corresponding to Case 2 and Case 3, respectively.
  4. (d) On T t coordinates, sketch the temperature history at the plate locations x = 0 , ± L during the transient period between the distributions for Cases 2 and 3. Where and when will the temperature in the system achieve a maximum value?

Blurred answer
Students have asked these similar questions
A spherical pellet (ρ =1000 kg/m3 , c = 1000 J/(kg⋅K)) with a radius ro = 1 cm is cooled from an initial temperature of 200°C by immersion in water bath at 10°C with a convection coefficient h = 100 W/(m2 K). Evaluate the temperature in the center and on the surface of the pellet after 10 s of immersion for two cases: (a) Thermal conductivity of the pellet k = 0.1 W/(m⋅K) (b) Thermal conductivity of the pellet k = 5 W/(m⋅K)
Calculate the heat losses per unit length in a horizontal tube with an outside diameter of 15 cm, if its surface is kept at 400 K AND the surrounding air has a temperature of 300 K and a pressure of 1 bar.The properties of air at a pressure of 1 bar and a film temperature of 350 K are: In this case, v = 20.76 x 10-6 m2/s , α = 0.2983 x 10-4 m2/s, k = 0.03003 W/mK, Pr = 0.697, β = 2.86 x 10-3 K-1
Indirect Cooling With Liquid Nitrogen. You are designing a system to cool an insulated silver plate of dimensions 2.00 cm × 2.00 cm x 0.40 cm. One end of a thermally insulated copper wire (diameter D = 2.70 mm and length L = 12.0 cm) is dipped into a vat of liquid nitrogen (T = 77.2 K), and the other end is attached to the bottom of the silver plate. (a) If the silver plate starts at room temperature (73.0°F), what is the initial rate of heat flow between the plate and the liquid nitrogen reservoir? (b) Assuming the rate of heat flow calculated in part (a), estimate the temperature of the silver plate after 30.0 seconds.

Chapter 2 Solutions

Introduction to Heat Transfer

Ch. 2 - Consider steady-state conditions for...Ch. 2 - Consider a plane wall 100 mm thick and of thermal...Ch. 2 - Prob. 2.13PCh. 2 - In the two-dimensional body illustrated, the...Ch. 2 - Consider the geometry of Problem 2.14 for the case...Ch. 2 - Steady-state, one-dimensional conduction occurs in...Ch. 2 - Prob. 2.17PCh. 2 - Prob. 2.18PCh. 2 - Consider a 300mm300mm window in an aircraft. For a...Ch. 2 - Prob. 2.20PCh. 2 - Use IHT to perform the following tasks. Graph the...Ch. 2 - Calculate the thermal conductivity of air,...Ch. 2 - A method for determining the thermal conductivity...Ch. 2 - Prob. 2.24PCh. 2 - Prob. 2.25PCh. 2 - At a given instant of time, the temperature...Ch. 2 - Prob. 2.27PCh. 2 - Uniform internal heat generation at q.=5107W/m3 is...Ch. 2 - Prob. 2.29PCh. 2 - The steady-state temperature distribution in a...Ch. 2 - The temperature distribution across a wall 0.3 m...Ch. 2 - Prob. 2.32PCh. 2 - Prob. 2.33PCh. 2 - Prob. 2.34PCh. 2 - Prob. 2.35PCh. 2 - Prob. 2.36PCh. 2 - Prob. 2.37PCh. 2 - One-dimensional, steady-state conduction with no...Ch. 2 - One-dimensional, steady-state conduction with no...Ch. 2 - The steady-state temperature distribution in a...Ch. 2 - One-dimensional, steady-state conduction with no...Ch. 2 - Prob. 2.42PCh. 2 - Prob. 2.43PCh. 2 - Prob. 2.44PCh. 2 - Beginning with a differential control volume in...Ch. 2 - A steam pipe is wrapped with insulation of inner...Ch. 2 - Prob. 2.47PCh. 2 - Prob. 2.48PCh. 2 - Two-dimensional, steady-state conduction occurs in...Ch. 2 - Prob. 2.50PCh. 2 - Prob. 2.51PCh. 2 - A chemically reacting mixture is stored in a...Ch. 2 - A thin electrical heater dissipating 4000W/m2 is...Ch. 2 - The one-dimensional system of mass M with constant...Ch. 2 - Consider a one-dimensional plane wall of thickness...Ch. 2 - A large plate of thickness 2L is at a uniform...Ch. 2 - Prob. 2.57PCh. 2 - Prob. 2.58PCh. 2 - A plane wall has constant properties, no internal...Ch. 2 - A plane wall with constant properties is initially...Ch. 2 - Consider the conditions associated with Problem...Ch. 2 - Prob. 2.62PCh. 2 - A spherical particle of radius r1 experiences...Ch. 2 - Prob. 2.64PCh. 2 - A plane wall of thickness L=0.1m experiences...Ch. 2 - Prob. 2.66PCh. 2 - A composite one-dimensional plane wall is of...Ch. 2 - Prob. 2.68PCh. 2 - The steady-state temperature distribution in a...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license