Introduction to Heat Transfer
Introduction to Heat Transfer
6th Edition
ISBN: 9780470501962
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
bartleby

Videos

Question
Book Icon
Chapter 2, Problem 2.66P

(a)

To determine

The verification of the equations to satisfy the heat equation and boundary conditions.

(b)

To determine

The expression for the heat flux at x=0 and x=L .

(c)

To determine

The sketch of temperature distribution at t=0 , t= and t=0 , t= .

The sketch of variation of heat flux with time.

(d)

To determine

The effects of α on the thermal response of the material to a change in surface temperature.

Blurred answer
Students have asked these similar questions
Question 2a) Give the Stefan Boltzman equation and define each term.[4]b) A electric room heater (radiator) element is 25 cm long and 4 cm in diameter. The element dissipates heat to the surroundings at 1500 W mainly by radiation, the surrounding temperature being 15°C. Determine the equilibrium temperature of the element surface.[4]c) A composite cylinder consists of 10 cm radius steel pipe of 25 mm thickness over which two layers of insulation 30 mm and 35 mm are laid. The conductivities are 25 W/mK, 0.25 W/mK and 0.65 W/mK. The inside is exposed to convection at 300°C with h 65 W/m2K.The outside is exposed to air at 30°C with h 15 W/m2K. Determinei. the heat loss/m,the interface temperatures.ii. The overall heat transfer coefficient.[4][4][2]
A steel pipe (outside diameter 100 mm) is covered with two layers of insulation. The inside layer, 40 mm thick, has a thermal conductivity of 0.07 W/(m K). The outside layer, 20 mm thick, has a thermal conductivity of 0.15 W/(m K). The pipe is used to convey steam at a pressure of 600 kPa. The outside temperature of insulation is 24°C. If the pipe is 10 m long, determine the following, assuming the resistance to conductive heat transfer in steel pipe and convective resistance on the steam side are negligible: a. The heat loss per hour. b. The interface temperature of insulation.
Some sections of the Alaska pipeline above ground are supported by vertical steel supports (k = 25 W/mK), which have a length of 1 m and a cross-sectional area of 0.05 m². Under normal operating conditions, the temperature variation along the length of the steel support is given by the expression T = 100 – 150x + 10x², where T and x have units of °C and m, respectively. Temperature variations in the cross-sectional area of the support are negligible. Evaluate the temperature and the heat conduction rate at the pipeline-support junction (x = 0) and at the support-soil interface (x = 1 m). Explain the difference in heat rates.

Chapter 2 Solutions

Introduction to Heat Transfer

Ch. 2 - Consider steady-state conditions for...Ch. 2 - Consider a plane wall 100 mm thick and of thermal...Ch. 2 - Prob. 2.13PCh. 2 - In the two-dimensional body illustrated, the...Ch. 2 - Consider the geometry of Problem 2.14 for the case...Ch. 2 - Steady-state, one-dimensional conduction occurs in...Ch. 2 - Prob. 2.17PCh. 2 - Prob. 2.18PCh. 2 - Consider a 300mm300mm window in an aircraft. For a...Ch. 2 - Prob. 2.20PCh. 2 - Use IHT to perform the following tasks. Graph the...Ch. 2 - Calculate the thermal conductivity of air,...Ch. 2 - A method for determining the thermal conductivity...Ch. 2 - Prob. 2.24PCh. 2 - Prob. 2.25PCh. 2 - At a given instant of time, the temperature...Ch. 2 - Prob. 2.27PCh. 2 - Uniform internal heat generation at q.=5107W/m3 is...Ch. 2 - Prob. 2.29PCh. 2 - The steady-state temperature distribution in a...Ch. 2 - The temperature distribution across a wall 0.3 m...Ch. 2 - Prob. 2.32PCh. 2 - Prob. 2.33PCh. 2 - Prob. 2.34PCh. 2 - Prob. 2.35PCh. 2 - Prob. 2.36PCh. 2 - Prob. 2.37PCh. 2 - One-dimensional, steady-state conduction with no...Ch. 2 - One-dimensional, steady-state conduction with no...Ch. 2 - The steady-state temperature distribution in a...Ch. 2 - One-dimensional, steady-state conduction with no...Ch. 2 - Prob. 2.42PCh. 2 - Prob. 2.43PCh. 2 - Prob. 2.44PCh. 2 - Beginning with a differential control volume in...Ch. 2 - A steam pipe is wrapped with insulation of inner...Ch. 2 - Prob. 2.47PCh. 2 - Prob. 2.48PCh. 2 - Two-dimensional, steady-state conduction occurs in...Ch. 2 - Prob. 2.50PCh. 2 - Prob. 2.51PCh. 2 - A chemically reacting mixture is stored in a...Ch. 2 - A thin electrical heater dissipating 4000W/m2 is...Ch. 2 - The one-dimensional system of mass M with constant...Ch. 2 - Consider a one-dimensional plane wall of thickness...Ch. 2 - A large plate of thickness 2L is at a uniform...Ch. 2 - Prob. 2.57PCh. 2 - Prob. 2.58PCh. 2 - A plane wall has constant properties, no internal...Ch. 2 - A plane wall with constant properties is initially...Ch. 2 - Consider the conditions associated with Problem...Ch. 2 - Prob. 2.62PCh. 2 - A spherical particle of radius r1 experiences...Ch. 2 - Prob. 2.64PCh. 2 - A plane wall of thickness L=0.1m experiences...Ch. 2 - Prob. 2.66PCh. 2 - A composite one-dimensional plane wall is of...Ch. 2 - Prob. 2.68PCh. 2 - The steady-state temperature distribution in a...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license