Introduction to Heat Transfer
Introduction to Heat Transfer
6th Edition
ISBN: 9780470501962
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 2, Problem 2.6P

A composite rod consists of two different materials, A and B, each of length 0.5L.

Chapter 2, Problem 2.6P, A composite rod consists of two different materials, A and B, each of length 0.5L. The thermal

The thermal conductivity of Material A is half that of Material B, that is, k A / k B = 0.5. Sketch the steady-state temperature and heat flux distributions, T x and q x " , respectively. Assume constant properties and no internal heat generation in either material.

Blurred answer
Students have asked these similar questions
A new 1 ft thick insulating material was recently tested for heat resistant properties. The data recorded temperatures of 70 deg. F and 210 deg. F on the cold and hot sides, respectively. If the thermal conductivity of the insulating material is 0.026 Btu/ft . h .⁰ F, calculate the rate of the heat flux,Q/A, through the wall in Btu/ft^2 . h. Resolve the problem in SI units.
The cross-sectional area of a conical piece made of pure aluminum has a diameter D = a.x ^ 1/2 and a = 0.5m ^ 1/2.The left edge surface of the part is at x1 = 25 mm, and the right edge surface is x2 = 125 mm. Edge temperatures are T1 = 600K and T2 = 400K and the side surface is completely insulated.a) Assuming that the heat conduction is one dimensional, write a relation for the temperature distribution T (x).b) Calculate the heat transfer.
The composite wall of a furnace consists of three different materials, two of which have known thermal conductivity (ka = 20 W/m°C and kc = 50 W/m°C) and thicknesses La = 0.30 m and Lb = 0.15 m. The third material (B) is between A and C, with a thickness of 0.15 m, but its thermal conductivity (kb) is unknown. Under steady-state operating conditions, measurements reveal a temperature of 20 °C on the external surface, 600 °C on the internal surface, and a furnace ambient temperature of 800 °C. The internal convection coefficient is 25 W/m²°C. What is the value of kb?

Chapter 2 Solutions

Introduction to Heat Transfer

Ch. 2 - Consider steady-state conditions for...Ch. 2 - Consider a plane wall 100 mm thick and of thermal...Ch. 2 - Prob. 2.13PCh. 2 - In the two-dimensional body illustrated, the...Ch. 2 - Consider the geometry of Problem 2.14 for the case...Ch. 2 - Steady-state, one-dimensional conduction occurs in...Ch. 2 - Prob. 2.17PCh. 2 - Prob. 2.18PCh. 2 - Consider a 300mm300mm window in an aircraft. For a...Ch. 2 - Prob. 2.20PCh. 2 - Use IHT to perform the following tasks. Graph the...Ch. 2 - Calculate the thermal conductivity of air,...Ch. 2 - A method for determining the thermal conductivity...Ch. 2 - Prob. 2.24PCh. 2 - Prob. 2.25PCh. 2 - At a given instant of time, the temperature...Ch. 2 - Prob. 2.27PCh. 2 - Uniform internal heat generation at q.=5107W/m3 is...Ch. 2 - Prob. 2.29PCh. 2 - The steady-state temperature distribution in a...Ch. 2 - The temperature distribution across a wall 0.3 m...Ch. 2 - Prob. 2.32PCh. 2 - Prob. 2.33PCh. 2 - Prob. 2.34PCh. 2 - Prob. 2.35PCh. 2 - Prob. 2.36PCh. 2 - Prob. 2.37PCh. 2 - One-dimensional, steady-state conduction with no...Ch. 2 - One-dimensional, steady-state conduction with no...Ch. 2 - The steady-state temperature distribution in a...Ch. 2 - One-dimensional, steady-state conduction with no...Ch. 2 - Prob. 2.42PCh. 2 - Prob. 2.43PCh. 2 - Prob. 2.44PCh. 2 - Beginning with a differential control volume in...Ch. 2 - A steam pipe is wrapped with insulation of inner...Ch. 2 - Prob. 2.47PCh. 2 - Prob. 2.48PCh. 2 - Two-dimensional, steady-state conduction occurs in...Ch. 2 - Prob. 2.50PCh. 2 - Prob. 2.51PCh. 2 - A chemically reacting mixture is stored in a...Ch. 2 - A thin electrical heater dissipating 4000W/m2 is...Ch. 2 - The one-dimensional system of mass M with constant...Ch. 2 - Consider a one-dimensional plane wall of thickness...Ch. 2 - A large plate of thickness 2L is at a uniform...Ch. 2 - Prob. 2.57PCh. 2 - Prob. 2.58PCh. 2 - A plane wall has constant properties, no internal...Ch. 2 - A plane wall with constant properties is initially...Ch. 2 - Consider the conditions associated with Problem...Ch. 2 - Prob. 2.62PCh. 2 - A spherical particle of radius r1 experiences...Ch. 2 - Prob. 2.64PCh. 2 - A plane wall of thickness L=0.1m experiences...Ch. 2 - Prob. 2.66PCh. 2 - A composite one-dimensional plane wall is of...Ch. 2 - Prob. 2.68PCh. 2 - The steady-state temperature distribution in a...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license