menu
bartleby
search
close search
Hit Return to see all results
close solutoin list

Measurements are made of the intensity distribution within the central bright fringe in a Young’s interference pattern (see Fig. 36.5). At a particular value of y , it is found that I / I max = 0.810 when 600-nm light is used. What wavelength of light should be used to reduce the relative intensity at the same location to 64.0% of the maximum intensity?

BuyFindarrow_forward

Physics for Scientists and Enginee...

9th Edition
Raymond A. Serway + 1 other
Publisher: Cengage Learning
ISBN: 9781305116399

Solutions

Chapter
Section
BuyFindarrow_forward

Physics for Scientists and Enginee...

9th Edition
Raymond A. Serway + 1 other
Publisher: Cengage Learning
ISBN: 9781305116399
Chapter 37, Problem 37.58AP
Textbook Problem
3 views

Measurements are made of the intensity distribution within the central bright fringe in a Young’s interference pattern (see Fig. 36.5). At a particular value of y, it is found that I/Imax = 0.810 when 600-nm light is used. What wavelength of light should be used to reduce the relative intensity at the same location to 64.0% of the maximum intensity?

To determine
The wavelength of light to reduce the relative intensity.

Explanation of Solution

Given info: The ratio of the intensity to maximum intensity for first wavelength measurement of light is 0.810 and the wavelength in the first measurement is 600nm .

Formula to calculate intensity at point in a double slit interference pattern is,

I=Imaxcos2(πydλ1L)

Here,

λ1 is the wavelength in the first measurement.

d is the distance between the two slits.

L is the distance between two slits.

y is the fringe separation.

I is the relative intensity at certain point for first measurement.

Imax is the maximum intensity for first measurement.

Rearrange the above equation to get the πydL .

πydL=λ1cos1(IImax)12 (1)

Substitute 600nm for λ and 0.810 for IImax in equation (1) to find the πydL .

πydL=(600nm)cos1(0.810)12=271nm

The relative intensity is 64.0% of the maximum intensity for the second wavelength.

I2=64.0%I2maxI2I2max=0

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

Chapter 37 Solutions

Physics for Scientists and Engineers, Technology Update (No access codes included)
Show all chapter solutions
add
Ch. 37 - Suppose you perform Youngs double-slit experiment...Ch. 37 - A plane monochromatic light wave is incident on a...Ch. 37 - A film of' oil on a puddle in a parking lot shows...Ch. 37 - Why is the lens oil a good-quality camera coaled...Ch. 37 - Explain why two flashlights held close together do...Ch. 37 - Explain why two flashlights held close together do...Ch. 37 - A lens with outer radius of curvature R and index...Ch. 37 - Consider a dark fringe in a double-slit...Ch. 37 - (a) In Youngs double-slit experiment, why do we...Ch. 37 - What is the necessary condition on the path length...Ch. 37 - In a laboratory accident, you spill two liquids...Ch. 37 - A theatrical smoke machine fills the space bet...Ch. 37 - Two slits are separated by 0.320 mm. A beam of...Ch. 37 - Light of wavelength 530 nm illuminates a pair of...Ch. 37 - A laser beam is incident on two slits with a...Ch. 37 - A Youngs interference experiment is performed with...Ch. 37 - Youngs double-slit experiment is performed with...Ch. 37 - Why is the following situation impossible? Two...Ch. 37 - Light of wavelength 620 nm falls on a double slit,...Ch. 37 - In a Youngs double-slit experiment, two parallel...Ch. 37 - pair of narrow, parallel slits separated by 0.250...Ch. 37 - Light with wavelength 442 nm passes through a...Ch. 37 - The two speakers of a boom box are 35.0 cm apart....Ch. 37 - In a location where the speed of sound is 343 m/s,...Ch. 37 - Two radio antennas separated by d = 300 in as...Ch. 37 - A riverside warehouse has several small doors...Ch. 37 - A student holds a laser that emits light of...Ch. 37 - A student holds a laser that emits light of...Ch. 37 - Radio waves of wavelength 125 m from a galaxy...Ch. 37 - In Figure P36.10 (not to scale), let L = 1.20 m...Ch. 37 - Coherent light rays of wavelength strike a pair...Ch. 37 - Monochromatic light of wavelength is incident on...Ch. 37 - In the double-slit arrangement of Figure P36.13, d...Ch. 37 - Youngs double-slit experiment underlies the...Ch. 37 - Two slits are separated by 0.180 mm. An...Ch. 37 - Show that the two waves with wave functions given...Ch. 37 - In Figure P37.18, let L = 120 cm and d = 0.250 cm....Ch. 37 - Monochromatic coherent light of amplitude E0 and...Ch. 37 - The intensity on the screen at a certain point in...Ch. 37 - Green light ( = 546 nm) illuminates a pair of...Ch. 37 - Two narrow, parallel slits separated by 0.850 mm...Ch. 37 - A soap bubble (n = 1.33) floating in air has the...Ch. 37 - A thin film of oil (n = 1.25) is located on...Ch. 37 - A material having an index of refraction of 1.30...Ch. 37 - A possible means for making an airplane invisible...Ch. 37 - A film of MgF2 (n = 1.38) having thickness 1.00 ...Ch. 37 - A beam of 580-nm light passes through two closely...Ch. 37 - An oil film (n = 1.45) floating on water is...Ch. 37 - An air wedge is formed between two glass plates...Ch. 37 - Astronomers observe the chromosphere of the Sun...Ch. 37 - When a liquid is introduced into the air space...Ch. 37 - A lens made of glass (ng = 1.52) is coated with a...Ch. 37 - Two glass plates 10.0 cm long are in contact at...Ch. 37 - Mirror M1 in Figure 36.13 is moved through a...Ch. 37 - The Michelson interferometer can be used to mea- n...Ch. 37 - One leg of a Michelson interferometer contains an...Ch. 37 - Radio transmitter A operating at 60.0 MHz is 10.0...Ch. 37 - A room is 6.0 m long and 3.0 m wide. At the front...Ch. 37 - In an experiment similar to that of Example 36.1,...Ch. 37 - In the What If? section of Example 36.2, it was...Ch. 37 - An investigator finds a fiber at a crime scene...Ch. 37 - Raise your hand and hold it flat. Think of the...Ch. 37 - Two coherent waves, coming from sources at...Ch. 37 - In a Youngs interference experiment, the two slits...Ch. 37 - In a Youngs double-slit experiment using light of...Ch. 37 - Review. A flat piece of glass is held stationary...Ch. 37 - A certain grade of crude oil has an index of...Ch. 37 - The waves from a radio station can reach a home...Ch. 37 - Interference effects are produced at point P on a...Ch. 37 - Measurements are made of the intensity...Ch. 37 - Many cells are transparent anti colorless....Ch. 37 - Consider the double-slit arrangement shown in...Ch. 37 - Figure P36.35 shows a radio-wave transmitter and a...Ch. 37 - Figure P36.35 shows a radio-wave transmitter and a...Ch. 37 - In a Newtons-rings experiment, a plano-convex...Ch. 37 - Why is the following situation impossible? A piece...Ch. 37 - A plano-concave lens having index of refraction...Ch. 37 - A plano-convex lens has index of refraction n. The...Ch. 37 - Interference fringes are produced using Lloyds...Ch. 37 - The quantity nt in Equations 36.12 and 36.13 is...Ch. 37 - Astronomers observe a 60.0-MHz radio source both...Ch. 37 - Figure CQ37.2 shows an unbroken soap film in a...Ch. 37 - Our discussion of the techniques for determining...Ch. 37 - The condition for constructive interference by...Ch. 37 - Both sides of a uniform film that has index of...Ch. 37 - Slit 1 of a double slit is wider than slit 2 so...Ch. 37 - Monochromatic light of wavelength 620 nm passes...Ch. 37 - A plano-convex lens having a radius of curvature...

Additional Science Textbook Solutions

Find more solutions based on key concepts
Show solutions add
The fiber-rich portion of the wheat kernel is the bran layer. T F

Nutrition: Concepts and Controversies - Standalone book (MindTap Course List)

How do evaporites form?

Oceanography: An Invitation To Marine Science, Loose-leaf Versin