An Introduction to Thermal Physics

1st Edition

ISBN: 9780201380279

Author: Daniel V. Schroeder

Publisher: Addison Wesley

*expand_more*

*expand_more*

*format_list_bulleted*

#### Concept explainers

Question

Chapter 7.4, Problem 42P

**(a)**

To determine

The total energy of the

**(b)**

To determine

The plot of the spectrum of radiation as a function of photon energy.

**(c)**

To determine

The fraction of the total energy is in the visible region of the spectrum.

Expert Solution & Answer

Learn your wayIncludes step-by-step video

*schedule*05:05

Students have asked these similar questions

To measure temperatures, physicists often use the variation of intensity of EM radiation emitted by an object. The wavelength at which the intensity is greatest is given by the equation:
λmaxT = 0.2898 cm.K
where λmax is the wavelength of greatest intensity and T is the temperature of the object in kelvins. In 1965, microwave radiation peaking at λmax = 0.107 cm was discovered coming in all directions from space. To what temperature, in a) K b) °C c) °F, does this wavelength correspond?

(a) How many minutes does it take a photon to travel from the Sun to the Earth?
min
(b) What is the energy in ev of a photon with a wavelength of 478 nm?
ev
(c) What is the wavelength (in m) of a photon with an energy of 1.03 eV?

Consider the electromagnetic radiation inside a kiln, with a volume of 1 m3 and a temperature of 1500 K.
What fraction of all the energy is in the visible portion of the spectrum, with wavelengths between 400 nm and 700 nm?

# Chapter 7 Solutions

An Introduction to Thermal Physics

Ch. 7.1 - Prob. 1PCh. 7.1 - Prob. 3PCh. 7.1 - Prob. 4PCh. 7.1 - Show that when a system is in thermal and...Ch. 7.1 - Prob. 7PCh. 7.2 - Prob. 8PCh. 7.2 - Prob. 9PCh. 7.2 - Prob. 11PCh. 7.2 - Prob. 12PCh. 7.2 - Prob. 13P

Ch. 7.2 - Prob. 14PCh. 7.2 - Prob. 15PCh. 7.2 - Prob. 16PCh. 7.2 - Prob. 17PCh. 7.2 - Prob. 18PCh. 7.3 - Prob. 19PCh. 7.3 - Prob. 20PCh. 7.3 - Prob. 21PCh. 7.3 - Prob. 22PCh. 7.3 - Prob. 24PCh. 7.3 - Prob. 25PCh. 7.3 - Prob. 26PCh. 7.3 - Prob. 29PCh. 7.3 - Prob. 32PCh. 7.3 - Prob. 33PCh. 7.3 - Prob. 34PCh. 7.4 - Prob. 37PCh. 7.4 - Prob. 38PCh. 7.4 - Prob. 39PCh. 7.4 - Prob. 40PCh. 7.4 - Prob. 41PCh. 7.4 - Prob. 42PCh. 7.4 - Prob. 43PCh. 7.4 - Prob. 44PCh. 7.4 - Prob. 45PCh. 7.4 - Prob. 46PCh. 7.4 - Prob. 47PCh. 7.4 - Prob. 48PCh. 7.4 - Prob. 49PCh. 7.4 - Prob. 50PCh. 7.4 - Prob. 51PCh. 7.4 - Prob. 52PCh. 7.4 - Prob. 53PCh. 7.4 - Prob. 54PCh. 7.4 - Prob. 55PCh. 7.4 - Prob. 56PCh. 7.5 - Prob. 57PCh. 7.5 - Prob. 58PCh. 7.5 - Prob. 59PCh. 7.5 - Prob. 60PCh. 7.5 - The heat capacity of liquid 4He below 0.6 K is...Ch. 7.5 - Prob. 62PCh. 7.5 - Prob. 63PCh. 7.5 - Prob. 64PCh. 7.6 - Prob. 65PCh. 7.6 - Prob. 66PCh. 7.6 - Prob. 67PCh. 7.6 - Prob. 68PCh. 7.6 - If you have a computer system that can do...Ch. 7.6 - Prob. 70PCh. 7.6 - Prob. 71PCh. 7.6 - Prob. 72PCh. 7.6 - Prob. 73PCh. 7.6 - Prob. 75P

Knowledge Booster

Learn more about

Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions

- (a) A certain X-ray photon has a wavelength of 18 nm. Calculate the frequency (υ) of this type of radiation. The speed of light, c = 2.998 x 108 m/s (b) Do you expect the frequency of photon of blue color light to be greater than, less than, or the same as the frequency of this X-ray photon? Explain your reasoning.
*arrow_forward*You are using a radiometer to observe the thermal radi- ation from an object that is heated to maintain its tem- perature at 1278 K. The radiometer records radiation in a wavelength interval of 12.6 nm. By changing the wave- length at which you are measuring, you set the radiome- ter to record the most intense radiation emission from the object. What is the intensity of the emitted radiation in this interval?*arrow_forward*A particular star has a radius of 8.46 ✕ 108 m. The peak intensity of the radiation it emits is at a wavelength of 679 nm. (a) What is the energy (in J) of a photon with this wavelength? answer in J (b) What is the star's surface temperature (in K)? (Round your answer to at least the nearest integer.) answer in K (c) At what rate (in W) is energy emitted from the star in the form of radiation? Assume the star is a blackbody, with emissivity e = 1. answer in W (d) Using the results from parts (a) and (c), estimate the rate (in photons/s) at which photons are emitted by the star. answer in photon/s*arrow_forward* - Suppose that the microwave radiation has a wavelength of 11.6 cm. How many photons are required to heat 265 mL of coffee from 25.0 degrees Celcius to 62.0 degrees Celcius? Assume that the coffee has the same density, 0.997 g/mL, and specific heat capacity, 4.184 J/(g.K), as water over this temperature range.
*arrow_forward*you are sitting at a desk in a completely dark room. the room is at normal indoor room temperature. there is an inanimate and un-powered object on your desk (e.g., a box, pencil case, notebook,...). what wavelength of blackbody radiation is emitted from that object with greatest intensity? (assume the object has the same temperature as the rest of the room.) express your answer in microns.*arrow_forward*(a) Calculate the wavelength of light in vacuum that has a frequency of 5.37 x 10¹5 Hz. nm (b) What is its wavelength in ethyl alcohol? nm (c) Calculate the energy of one photon of such light in vacuum. Express the answer in electron volts. eV (d) Does the energy of the photon change when it enters the ethyl alcohol? O The energy of the photon changes. O The energy of the photon does not change. Explain.*arrow_forward* - The Sun is approximately an ideal blackbody radiator with a surface temperature of 5800 K. (a) Find the wavelength at which its spectral radiancy is maximum and (b) identify the type of electromagnetic wave corresponding to that wavelength. (c) As we shall discuss in Chapter 44, the universe is approximately an ideal blackbody radiator with radiation emitted when atoms first formed.Today the spectral radiancy of that radiation peaks at a wavelength of 1.06 mm (in the microwave region).What is the corresponding temperature of the universe?
*arrow_forward*(a) How many minutes does it take a photon to travel from the Sun to the Earth? in minutes (b) What is the energy in eV of a photon with a wavelength of 533 nm? in eV (c) What is the wavelength (in m) of a photon with an energy of 1.03 eV? in meters*arrow_forward*Consider the electromagnetic radiation inside a kiln, with a volume of 1 m3 and a temperature of 1500 K. (a) What is the total energy of this radiation?*arrow_forward* - Photons of a certain infrared light have an energy of 1.05 10-19 J. (a) What is the frequency of this IR light? (b) Use ? = c/f to calculate its wavelength in nanometers.
*arrow_forward*A photon has momentum of magnitude 8.24 x 10-28 kg . m/s. (a) What is the energy of this photon? Give your answer in joules and in electron volts. (b) What is the wavelength of this photon? In what region of the electromagnetic spectrum does it lie?*arrow_forward*A blackbody is a substance that absorbs radiation of all wavelengths and radiates in a continuous spectrum at all wavelengths. It is given the name blackbody because an object that absorbs light at all wavelengths appears black to the human eye. By the end of the 19th century, several properties of blackbody radiation had been established. First, the total intensity I (the average rate of radiation of energy per unit surface area) emitted from a blackbody was shown to be proportional to the fourth power of its temperature: I=oT¹ This is called the Stefan-Boltzmann law for a blackbody. The constant of proportionality o is known as the Stefan-Boltzmann constant and was determined to be o = 5.67 x 10-8 W/(m². K¹). It had also been discovered that the wavelength at which the radiation intensity was maximum varied inversely with temperature. This result, known as the Wien displacement law, is written AmT = 2.90 x 10-³ m. K. where Am is the wavelength with the greatest radiated intensity. ✓…*arrow_forward*

*arrow_back_ios*

SEE MORE QUESTIONS

*arrow_forward_ios*

Recommended textbooks for you

- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics

Physics

ISBN:9781305952300

Author:Raymond A. Serway, Chris Vuille

Publisher:Cengage Learning

University Physics (14th Edition)

Physics

ISBN:9780133969290

Author:Hugh D. Young, Roger A. Freedman

Publisher:PEARSON

Introduction To Quantum Mechanics

Physics

ISBN:9781107189638

Author:Griffiths, David J., Schroeter, Darrell F.

Publisher:Cambridge University Press

Physics for Scientists and Engineers

Physics

ISBN:9781337553278

Author:Raymond A. Serway, John W. Jewett

Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy

Physics

ISBN:9780321820464

Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden

Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...

Physics

ISBN:9780134609034

Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field

Publisher:PEARSON