Tutorials in Introductory Physics
Tutorials in Introductory Physics
1st Edition
ISBN: 9780130970695
Author: Peter S. Shaffer, Lillian C. McDermott
Publisher: Addison Wesley
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 8.1, Problem 2bT

To understand the interaction between the wire loops and solenoids in section I. we can use the idea that a force is exerted on a charged particle moving in a magnetic field. In each of those cases there was an induced current when there was relative motion between the solenoid and the wire loop. In other situations such as the one above, however, there is an induced current in the wire loop even though there is no relative motion between the wire loop and the solenoid. There is a general rule called Lenz’ law that we can use in all cases to predict the direction of the induced current

B. Discuss the statement of Lenz’ law in your textbook with your partners. Make sure you understand how it is related to the statement by the student with whom you agreed in part D of section I.

Blurred answer
Students have asked these similar questions
The arrangement illustrated in the figure below is composed of six finite straight wires of length l. The electric current flowing in such an arrangement is i. Using the Biot-Savart law, calculate: The magnitude of the magnetic field at point P due to the wire located along segment ab.The answer is in the second image. I am trying to use the standard biot-savart, which is B = (μ0*I/4π) * ∫dl * sinθ / r^2, and it always gives me 16*pi*l at the denominator, instead of 8pi*l. Solve it using B = (μ0*I/4π) * ∫dl * sinθ / r^2, and note that the image with the answer is correct.
PART A: Two long wires, one of which has a semicircular bend of radius R and center P, are positioned as shown below. If both wires carry a current, how far apart must their parallel sections be so that the total magnetic field at P is zero? Express a in terms of R. Does the current in the straight wire flow up or down? Explain.   PART B: The infinite, straight wire shown below carries a current I1. The rectnangular loop, whose long sides are parallel to the wire, carries a current I2. What are the magnitude and direction of the total magnetic force on the rectangular loop due to the magnetic field of the long wire?
Consider the two current-carrying wires in the figure. On the left is a long, straight wire carrying current I1. In the same plane, there is a rectangular loop, which carries a current I2. The dimensions of the rectangular loop are shown in the figure, and the left side of the loop is a distance c from the wire. What are the magnitude and direction of the net force exerted on the loop by the magnetic field created by the wire? (Use any variable or symbol stated above along with the following as necessary: ?0, ℓ, and a.)
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY