Bartleby Sitemap - Textbook Solutions

All Textbook Solutions for Practical Management Science

Use @RISK to draw a uniform distribution from 400 to 750. Then answer the following questions. a. What are the mean and standard deviation of this distribution? b. What are the 5th and 95th percentiles of this distribution? c. What is the probability that a random number from this distribution is less than 450? d. What is the probability that a random number from this distribution is greater than 650? e. What is the probability that a random number from this distribution is between 500 and 700?Use @RISK to draw a normal distribution with mean 500 and standard deviation 100. Then answer the following questions. a. What is the probability that a random number from this distribution is less than 450? b. What is the probability that a random number from this distribution is greater than 650? c. What is the probability that a random number from this distribution is between 500 and 700?Use @RISK to draw a triangular distribution with parameters 300, 500, and 900. Then answer the following questions. a. What are the mean and standard deviation of this distribution? b. What are the 5th and 95th percentiles of this distribution? c. What is the probability that a random number from this distribution is less than 450? d. What is the probability that a random number from this distribution is greater than 650? e. What is the probability that a random number from this distribution is between 500 and 700?Use @RISK to draw a binomial distribution that results from 50 trials with probability of success 0.3 on each trial, and use it to answer the following questions. a. What are the mean and standard deviation of this distribution? b. You have to be more careful in interpreting @RISK probabilities with a discrete distribution such as this binomial. For example, if you move the left slider to 11, you find a probability of 0.139 to the left of it. But is this the probability of less than 11 or less than or equal to 11? One way to check is to use Excels BINOM.DIST function. Use this function to interpret the 0.139 value from @RISK. c. Using part b to guide you, use @RISK to find the probability that a random number from this distribution will be greater than 17. Check your answer by using the BINOM.DIST function appropriately in Excel.Use @RISK to draw a triangular distribution with parameters 200, 300, and 600. Then superimpose a normal distribution on this drawing, choosing the mean and standard deviation to match those from the triangular distribution. (Click the Add Overlay button and then choose the distribution to superimpose.) a. What are the 5th and 95th percentiles for these two distributions? b. What is the probability that a random number from the triangular distribution is less than 400? What is this probability for the normal distribution? c. Experiment with the sliders to answer questions similar to those in part b. Would you conclude that these two distributions differ most in the extremes (right or left) or in the middle? Explain.We all hate to keep track of small change. By using random numbers, it is possible to eliminate the need for change and give the store and the customer a fair deal. This problem indicates how it could be done. a. Suppose that you buy something for 0.20. How could you use random numbers (built into the cash register system) to decide whether you should pay 1.00 or nothing? b. If you bought something for 9.60, how would you use random numbers to eliminate the need for change? c. In the long run, why is this method fair to both the store and the customers? Would you personally (as a customer) be willing to abide by such a system?11PIn August of the current year, a car dealer is trying to determine how many cars of the next model year to order. Each car ordered in August costs 20,000. The demand for the dealers next year models has the probability distribution shown in the file P10_12.xlsx. Each car sells for 25,000. If demand for next years cars exceeds the number of cars ordered in August, the dealer must reorder at a cost of 22,000 per car. Excess cars can be disposed of at 17,000 per car. Use simulation to determine how many cars to order in August. For your optimal order quantity, find a 95% confidence interval for the expected profit.13P14P15PIf you add several normally distributed random numbers, the result is normally distributed, where the mean of the sum is the sum of the individual means, and the variance of the sum is the sum of the individual variances. (Remember that variance is the square of standard deviation.) This is a difficult result to prove mathematically, but it is easy to demonstrate with simulation. To do so, run a simulation where you add three normally distributed random numbers, each with mean 100 and standard deviation 10. Your single output variable should be the sum of these three numbers. Verify with @RISK that the distribution of this output is approximately normal with mean 300 and variance 300 (hence, standard deviation 300=17.32).In Problem 11 from the previous section, we stated that the damage amount is normally distributed. Suppose instead that the damage amount is triangularly distributed with parameters 500, 1500, and 7000. That is, the damage in an accident can be as low as 500 or as high as 7000, the most likely value is 1500, and there is definite skewness to the right. (It turns out, as you can verify in @RISK, that the mean of this distribution is 3000, the same as in Problem 11.) Use @RISK to simulate the amount you pay for damage. Run 5000 iterations. Then answer the following questions. In each case, explain how the indicated event would occur. a. What is the probability that you pay a positive amount but less than 750? b. What is the probability that you pay more than 600? c. What is the probability that you pay exactly 1000 (the deductible)?Continuing the previous problem, assume, as in Problem 11, that the damage amount is normally distributed with mean 3000 and standard deviation 750. Run @RISK with 5000 iterations to simulate the amount you pay for damage. Compare your results with those in the previous problem. Does it appear to matter whether you assume a triangular distribution or a normal distribution for damage amounts? Why isnt this a totally fair comparison? (Hint: Use @RISKs Define Distributions tool to find the standard deviation for the triangular distribution.)In Problem 12 of the previous section, suppose that the demand for cars is normally distributed with mean 100 and standard deviation 15. Use @RISK to determine the best order quantityin this case, the one with the largest mean profit. Using the statistics and/or graphs from @RISK, discuss whether this order quantity would be considered best by the car dealer. (The point is that a decision maker can use more than just mean profit in making a decision.)Use @RISK to analyze the sweatshirt situation in Problem 14 of the previous section. Do this for the discrete distributions given in the problem. Then do it for normal distributions. For the normal case, assume that the regular demand is normally distributed with mean 9800 and standard deviation 1300 and that the demand at the reduced price is normally distributed with mean 3800 and standard deviation 1400.Although the normal distribution is a reasonable input distribution in many situations, it does have two potential drawbacks: (1) it allows negative values, even though they may be extremely improbable, and (2) it is a symmetric distribution. Many situations are modelled better with a distribution that allows only positive values and is skewed to the right. Two of these that have been used in many real applications are the gamma and lognormal distributions. @RISK enables you to generate observations from each of these distributions. The @RISK function for the gamma distribution is RISKGAMMA, and it takes two arguments, as in =RISKGAMMA(3,10). The first argument, which must be positive, determines the shape. The smaller it is, the more skewed the distribution is to the right; the larger it is, the more symmetric the distribution is. The second argument determines the scale, in the sense that the product of it and the first argument equals the mean of the distribution. (The mean in this example is 30.) Also, the product of the second argument and the square root of the first argument is the standard deviation of the distribution. (In this example, it is 3(10=17.32.) The @RISK function for the lognormal distribution is RISKLOGNORM. It has two arguments, as in =RISKLOGNORM(40,10). These arguments are the mean and standard deviation of the distribution. Rework Example 10.2 for the following demand distributions. Do the simulated outputs have any different qualitative properties with these skewed distributions than with the triangular distribution used in the example? a. Gamma distribution with parameters 2 and 85 b. Gamma distribution with parameters 5 and 35 c. Lognormal distribution with mean 170 and standard deviation 60When you use @RISKs correlation feature to generate correlated random numbers, how can you verify that they are correlated? Try the following. Use the RISKCORRMAT function to generate two normally distributed random numbers, each with mean 100 and standard deviation 10, and with correlation 0.7. To run a simulation, you need an output variable, so sum these two numbers and designate the sum as an output variable. Run the simulation with 1000 iterations and then click the Browse Results button to view the histogram of the output or either of the inputs. Then click the Scatterplot button below the histogram and choose another variable (an input or the output) for the scatterplot. Using this method, are the two inputs correlated as expected? Are the two inputs correlated with the output? If so, how?24P25P28PSix months before its annual convention, the American Medical Association must determine how many rooms to reserve. At this time, the AMA can reserve rooms at a cost of 150 per room. The AMA believes the number of doctors attending the convention will be normally distributed with a mean of 5000 and a standard deviation of 1000. If the number of people attending the convention exceeds the number of rooms reserved, extra rooms must be reserved at a cost of 250 per room. a. Use simulation with @RISK to determine the number of rooms that should be reserved to minimize the expected cost to the AMA. Try possible values from 4100 to 4900 in increments of 100. b. Redo part a for the case where the number attending has a triangular distribution with minimum value 2000, maximum value 7000, and most likely value 5000. Does this change the substantive results from part a?30PA new edition of a very popular textbook will be published a year from now. The publisher currently has 1000 copies on hand and is deciding whether to do another printing before the new edition comes out. The publisher estimates that demand for the book during the next year is governed by the probability distribution in the file P10_31.xlsx. A production run incurs a fixed cost of 15,000 plus a variable cost of 20 per book printed. Books are sold for 190 per book. Any demand that cannot be met incurs a penalty cost of 30 per book, due to loss of goodwill. Up to 1000 of any leftover books can be sold to Barnes and Noble for 45 per book. The publisher is interested in maximizing expected profit. The following print-run sizes are under consideration: 0 (no production run) to 16,000 in increments of 2000. What decision would you recommend? Use simulation with 1000 replications. For your optimal decision, the publisher can be 90% certain that the actual profit associated with remaining sales of the current edition will be between what two values?32PW. L. Brown, a direct marketer of womens clothing, must determine how many telephone operators to schedule during each part of the day. W. L. Brown estimates that the number of phone calls received each hour of a typical eight-hour shift can be described by the probability distribution in the file P10_33.xlsx. Each operator can handle 15 calls per hour and costs the company 20 per hour. Each phone call that is not handled is assumed to cost the company 6 in lost profit. Considering the options of employing 6, 8, 10, 12, 14, or 16 operators, use simulation to determine the number of operators that minimizes the expected hourly cost (labor costs plus lost profits).Assume that all of a companys job applicants must take a test, and that the scores on this test are normally distributed. The selection ratio is the cutoff point used by the company in its hiring process. For example, a selection ratio of 25% means that the company will accept applicants for jobs who rank in the top 25% of all applicants. If the company chooses a selection ratio of 25%, the average test score of those selected will be 1.27 standard deviations above average. Use simulation to verify this fact, proceeding as follows. a. Show that if the company wants to accept only the top 25% of all applicants, it should accept applicants whose test scores are at least 0.674 standard deviation above average. (No simulation is required here. Just use the appropriate Excel normal function.) b. Now generate 1000 test scores from a normal distribution with mean 0 and standard deviation 1. The average test score of those selected is the average of the scores that are at least 0.674. To determine this, use Excels DAVERAGE function. To do so, put the heading Score in cell A3, generate the 1000 test scores in the range A4:A1003, and name the range A3:A1003 Data. In cells C3 and C4, enter the labels Score and 0.674. (The range C3:C4 is called the criterion range.) Then calculate the average of all applicants who will be hired by entering the formula =DAVERAGE(Data, "Score", C3:C4) in any cell. This average should be close to the theoretical average, 1.27. This formula works as follows. Excel finds all observations in the Data range that satisfy the criterion described in the range C3:C4 (Score0.674). Then it averages the values in the Score column (the second argument of DAVERAGE) corresponding to these entries. See online help for more about Excels database D functions. c. What information would the company need to determine an optimal selection ratio? How could it determine the optimal selection ratio?Lemingtons is trying to determine how many Jean Hudson dresses to order for the spring season. Demand for the dresses is assumed to follow a normal distribution with mean 400 and standard deviation 100. The contract between Jean Hudson and Lemingtons works as follows. At the beginning of the season, Lemingtons reserves x units of capacity. Lemingtons must take delivery for at least 0.8x dresses and can, if desired, take delivery on up to x dresses. Each dress sells for 160 and Hudson charges 50 per dress. If Lemingtons does not take delivery on all x dresses, it owes Hudson a 5 penalty for each unit of reserved capacity that is unused. For example, if Lemingtons orders 450 dresses and demand is for 400 dresses, Lemingtons will receive 400 dresses and owe Jean 400(50) + 50(5). How many units of capacity should Lemingtons reserve to maximize its expected profit?Dilberts Department Store is trying to determine how many Hanson T-shirts to order. Currently the shirts are sold for 21, but at later dates the shirts will be offered at a 10% discount, then a 20% discount, then a 40% discount, then a 50% discount, and finally a 60% discount. Demand at the full price of 21 is believed to be normally distributed with mean 1800 and standard deviation 360. Demand at various discounts is assumed to be a multiple of full-price demand. These multiples, for discounts of 10%, 20%, 40%, 50%, and 60% are, respectively, 0.4, 0.7, 1.1, 2, and 50. For example, if full-price demand is 2500, then at a 10% discount customers would be willing to buy 1000 T-shirts. The unit cost of purchasing T-shirts depends on the number of T-shirts ordered, as shown in the file P10_36.xlsx. Use simulation to determine how many T-shirts the company should order. Model the problem so that the company first orders some quantity of T-shirts, then discounts deeper and deeper, as necessary, to sell all of the shirts.It is surprising (but true) that if 23 people are in the same room, there is about a 50% chance that at least two people will have the same birthday. Suppose you want to estimate the probability that if 30 people are in the same room, at least two of them will have the same birthday. You can proceed as follows. a. Generate random birthdays for 30 different people. Ignoring the possibility of a leap year, each person has a 1/365 chance of having a given birthday (label the days of the year 1 to 365). You can use the RANDBETWEEN function to generate birthdays. b. Once you have generated 30 peoples birthdays, how can you tell whether at least two people have the same birthday? One way is to use Excels RANK function. (You can learn how to use this function in Excels online help.) This function returns the rank of a number relative to a given group of numbers. In the case of a tie, two numbers are given the same rank. For example, if the set of numbers is 4, 3, 2, 5, the RANK function returns 2, 3, 4, 1. (By default, RANK gives 1 to the largest number.) If the set of numbers is 4, 3, 2, 4, the RANK function returns 1, 3, 4, 1. c. After using the RANK function, you should be able to determine whether at least two of the 30 people have the same birthday. What is the (estimated) probability that this occurs?40PAt the beginning of each week, a machine is in one of four conditions: 1 = excellent; 2 = good; 3 = average; 4 = bad. The weekly revenue earned by a machine in state 1, 2, 3, or 4 is 100, 90, 50, or 10, respectively. After observing the condition of the machine at the beginning of the week, the company has the option, for a cost of 200, of instantaneously replacing the machine with an excellent machine. The quality of the machine deteriorates over time, as shown in the file P10 41.xlsx. Four maintenance policies are under consideration: Policy 1: Never replace a machine. Policy 2: Immediately replace a bad machine. Policy 3: Immediately replace a bad or average machine. Policy 4: Immediately replace a bad, average, or good machine. Simulate each of these policies for 50 weeks (using at least 250 iterations each) to determine the policy that maximizes expected weekly profit. Assume that the machine at the beginning of week 1 is excellent.Simulation can be used to illustrate a number of results from statistics that are difficult to understand with nonsimulation arguments. One is the famous central limit theorem, which says that if you sample enough values from any population distribution and then average these values, the resulting average will be approximately normally distributed. Confirm this by using @ RISK with the following population distributions (run a separate simulation for each): (a) discrete with possible values 1 and 2 and probabilities 0.2 and 0.8; (b) exponential with mean 1 (use the RISKEXPON function with the single argument 1); (c) triangular with minimum, most likely, and maximum values equal to 1,9, and 10. (Note that each of these distributions is very skewed.) Run each simulation with 10 values in each average, and run 1000 iterations to simulate 1000 averages. Create a histogram of the averages to see whether it is indeed bell-shaped. Then repeat, using 30 values in each average. Are the histograms based on 10 values qualitatively different from those, based on 30?43P46PIf you want to replicate the results of a simulation model with Excel functions only, not @RISK, you can build a data table and let the column input cell be any blank cell. Explain why this works.Suppose you simulate a gambling situation where you place many bets. On each bet, the distribution of your net winnings (loss if negative) is highly skewed to the left because there are some possibilities of really large losses but not much upside potential. Your only simulation output is the average of the results of all the bets. If you run @RISK with many iterations and look at the resulting histogram of this output, what will it look like? Why?49PBig Hit Video must determine how many copies of a new video to purchase. Assume that the companys goal is to purchase a number of copies that maximizes its expected profit from the video during the next year. Describe how you would use simulation to shed light on this problem. Assume that each time a video is rented, it is rented for one day.51P52PWhy is the RISKCORRMAT function necessary? How does @RISK generate random inputs by default, that is, when RISKCORRMAT is not used?Consider the claim that normally distributed inputs in a simulation model are bound to lead to normally distributed outputs. Do you agree or disagree with this claim? Defend your answer.55PWhen you use a RISKSIMTABLE function for a decision variable, such as the order quantity in the Walton model, explain how this provides a fair comparison across the different values tested.Consider a situation where there is a cost that is either incurred or not. It is incurred only if the value of some random input is less than a specified cutoff value. Why might a simulation of this situation give a very different average value of the cost incurred than a deterministic model that treats the random input as fixed at its mean? What does this have to do with the flaw of averages?If the number of competitors in Example 11.1 doubles, how does the optimal bid change?In Example 11.1, the possible profits vary from negative to positive for each of the 10 possible bids examined. a. For each of these, use @RISKs RISKTARGET function to find the probability that Millers profit is positive. Do you believe these results should have any bearing on Millers choice of bid? b. Use @RISKs RISKPERCENTILE function to find the 10th percentile for each of these bids. Can you explain why the percentiles have the values you obtain?Referring to Example 11.1, if the average bid for each competitor stays the same, but their bids exhibit less variability, does Millers optimal bid increase or decrease? To study this question, assume that each competitors bid, expressed as a multiple of Millers cost to complete the project, follows each of the following distributions. a. Triangular with parameters 1.0, 1.3, and 2.4 b. Triangular with parameters 1.2, 1.3, and 2.2 c. Use @RISKs Define Distributions window to check that the distributions in parts a and b have the same mean as the original triangular distribution in the example, but smaller standard deviations. What is the common mean? Why is it not the same as the most likely value, 1.3?See how sensitive the results in Example 11.2 are to the following changes. For each part, make the change indicated, run the simulation, and comment on any differences between your outputs and the outputs in the example. a. The cost of a new camera is increased to 500. b. The warranty period is decreased to one year. c. The terms of the warranty are changed. If the camera fails within one year, the customer gets a new camera for free. However, if the camera fails between 1 year and 1.5 years, the customer pays a pro rata share of the new camera, increasing linearly from 0 to full price. For example, if it fails at 1.2 years, which is 40% of the way from 1 to 1.5, the customer pays 40% of the full price. d. The customer pays 50 up front for an extended warranty. This extends the warranty to three years. This extended warranty is just like the original, so that if the camera fails within three years, the customer gets a new camera for free.In Example 11.2, the gamma distribution was used to model the skewness to the right of the lifetime distribution. Experiment to see whether the triangular distribution could have been used instead. Let its minimum value be 0, and choose its most likely and maximum values so that this triangular distribution has approximately the same mean and standard deviation as the gamma distribution in the example. (Use @RISKs Define Distributions window and trial and error to do this.) Then run the simulation and comment on similarities or differences between your outputs and the outputs in the example.6PIn Example 11.3, suppose you want to run five simulations, where the probability of passing inspection is varied from 0.6 to 1.0 in increments of 0.1. Use the RISKSIMTABLE function appropriately to do this. Comment on the effect of this parameter on the key outputs. In particular, does the probability of passing inspection have a large effect on when production should start? (Note: When this probability is low, it might be necessary to produce more than 25 batches, the maximum built into the model. Check whether this maximum should be increased.)In Example 11.3, if a batch fails to pass inspection, the entire batch is unusable. Change the model so that if a batch fails to pass inspection, it is reworked, and at the end of the rework, its entire yield (the same yield determined in column C) is usable. However, the rework takes 3, 4, or 5 days with respective probabilities 0.2, 0.5, and 0.3. Run the simulation for the modified model and comment on how the results change.Rerun the new car simulation from Example 11.4, but now introduce uncertainty into the fixed development cost. Let it be triangularly distributed with parameters 600 million, 650 million, and 850 million. (You can check that the mean of this distribution is 700 million, the same as the cost given in the example.) Comment on the differences between your output and those in the example. Would you say these differences are important for the company?Rerun the new car simulation from Example 11.4, but now use the RISKSIMTABLE function appropriately to simulate discount rates of 5%, 7.5%, 10%, 12.5%, and 15%. Comment on how the outputs change as the discount rate decreases from the value used in the example, 10%.In the cash balance model from Example 11.5, the timing is such that some receipts are delayed by one or two months, and the payments for materials and labor must be made a month in advance. Change the model so that all receipts are received immediately, and payments made this month for materials and labor are 80% of sales this month (not next month). The period of interest is again January through June. Rerun the simulation, and comment on any differences between your outputs and those from the example.12P13PThe simulation output from Example 11.6 indicates that an investment heavy in stocks produces the best results. Would it be better to invest entirely in stocks? Answer this by rerunning the simulation. Is there any apparent downside to this strategy?15PReferring to the retirement example in Example 11.6, rerun the model for a planning horizon of 10 years; 15 years; 25 years. For each, which set of investment weights maximizes the VAR 5% (the 5th percentile) of final cash in todays dollars? Does it appear that a portfolio heavy in stocks is better for long horizons but not for shorter horizons?A European put option allows an investor to sell a share of stock at the exercise price on the exercise data. For example, if the exercise price is 48, and the stock price is 45 on the exercise date, the investor can sell the stock for 48 and then immediately buy it back (that is, cover his position) for 45, making 3 profit. But if the stock price on the exercise date is greater than the exercise price, the option is worthless at that date. So for a put, the investor is hoping that the price of the stock decreases. Using the same parameters as in Example 11.7, find a fair price for a European put option. (Note: As discussed in the text, an actual put option is usually for 100 shares.)18P19PBased on Kelly (1956). You currently have 100. Each week you can invest any amount of money you currently have in a risky investment. With probability 0.4, the amount you invest is tripled (e.g., if you invest 100, you increase your asset position by 300), and, with probability 0.6, the amount you invest is lost. Consider the following investment strategies: Each week, invest 10% of your money. Each week, invest 30% of your money. Each week, invest 50% of your money. Use @RISK to simulate 100 weeks of each strategy 1000 times. Which strategy appears to be best in terms of the maximum growth rate? (In general, if you can multiply your investment by M with probability p and lose your investment with probability q = 1 p, you should invest a fraction [p(M 1) q]/(M 1) of your money each week. This strategy maximizes the expected growth rate of your fortune and is known as the Kelly criterion.) (Hint: If an initial wealth of I dollars grows to F dollars in 100 weeks, the weekly growth rate, labeled r, satisfies F = (I + r)100, so that r = (F/I)1/100 1.)Amanda has 30 years to save for her retirement. At the beginning of each year, she puts 5000 into her retirement account. At any point in time, all of Amandas retirement funds are tied up in the stock market. Suppose the annual return on stocks follows a normal distribution with mean 12% and standard deviation 25%. What is the probability that at the end of 30 years, Amanda will have reached her goal of having 1,000,000 for retirement? Assume that if Amanda reaches her goal before 30 years, she will stop investing. (Hint: Each year you should keep track of Amandas beginning cash positionfor year 1, this is 5000and Amandas ending cash position. Of course, Amandas ending cash position for a given year is a function of her beginning cash position and the return on stocks for that year. To estimate the probability that Amanda meets her goal, use an IF statement that returns 1 if she meets her goal and 0 otherwise.)In the financial world, there are many types of complex instruments called derivatives that derive their value from the value of an underlying asset. Consider the following simple derivative. A stocks current price is 80 per share. You purchase a derivative whose value to you becomes known a month from now. Specifically, let P be the price of the stock in a month. If P is between 75 and 85, the derivative is worth nothing to you. If P is less than 75, the derivative results in a loss of 100(75-P) dollars to you. (The factor of 100 is because many derivatives involve 100 shares.) If P is greater than 85, the derivative results in a gain of 100(P-85) dollars to you. Assume that the distribution of the change in the stock price from now to a month from now is normally distributed with mean 1 and standard deviation 8. Let EMV be the expected gain/loss from this derivative. It is a weighted average of all the possible losses and gains, weighted by their likelihoods. (Of course, any loss should be expressed as a negative number. For example, a loss of 1500 should be expressed as -1500.) Unfortunately, this is a difficult probability calculation, but EMV can be estimated by an @RISK simulation. Perform this simulation with at least 1000 iterations. What is your best estimate of EMV?Suppose you currently have a portfolio of three stocks, A, B, and C. You own 500 shares of A, 300 of B, and 1000 of C. The current share prices are 42.76, 81.33, and, 58.22, respectively. You plan to hold this portfolio for at least a year. During the coming year, economists have predicted that the national economy will be awful, stable, or great with probabilities 0.2, 0.5, and 0.3. Given the state of the economy, the returns (one-year percentage changes) of the three stocks are independent and normally distributed. However, the means and standard deviations of these returns depend on the state of the economy, as indicated in the file P11_23.xlsx. a. Use @RISK to simulate the value of the portfolio and the portfolio return in the next year. How likely is it that you will have a negative return? How likely is it that you will have a return of at least 25%? b. Suppose you had a crystal ball where you could predict the state of the economy with certainty. The stock returns would still be uncertain, but you would know whether your means and standard deviations come from row 6, 7, or 8 of the P11_23.xlsx file. If you learn, with certainty, that the economy is going to be great in the next year, run the appropriate simulation to answer the same questions as in part a. Repeat this if you learn that the economy is going to be awful. How do these results compare with those in part a?If you own a stock, buying a put option on the stock will greatly reduce your risk. This is the idea behind portfolio insurance. To illustrate, consider a stock that currently sells for 56 and has an annual volatility of 30%. Assume the risk-free rate is 8%, and you estimate that the stocks annual growth rate is 12%. a. Suppose you own 100 shares of this stock. Use simulation to estimate the probability distribution of the percentage return earned on this stock during a one-year period. b. Now suppose you also buy a put option (for 238) on the stock. The option has an exercise price of 50 and an exercise date one year from now. Use simulation to estimate the probability distribution of the percentage return on your portfolio over a one-year period. Can you see why this strategy is called a portfolio insurance strategy? c. Use simulation to show that the put option should, indeed, sell for about 238.25P26P27P28P29PSeas Beginning sells clothing by mail order. An important question is when to strike a customer from the companys mailing list. At present, the company strikes a customer from its mailing list if a customer fails to order from six consecutive catalogs. The company wants to know whether striking a customer from its list after a customer fails to order from four consecutive catalogs results in a higher profit per customer. The following data are available: If a customer placed an order the last time she received a catalog, then there is a 20% chance she will order from the next catalog. If a customer last placed an order one catalog ago, there is a 16% chance she will order from the next catalog she receives. If a customer last placed an order two catalogs ago, there is a 12% chance she will order from the next catalog she receives. If a customer last placed an order three catalogs ago, there is an 8% chance she will order from the next catalog she receives. If a customer last placed an order four catalogs ago, there is a 4% chance she will order from the next catalog she receives. If a customer last placed an order five catalogs ago, there is a 2% chance she will order from the next catalog she receives. It costs 2 to send a catalog, and the average profit per order is 30. Assume a customer has just placed an order. To maximize expected profit per customer, would Seas Beginning make more money canceling such a customer after six nonorders or four nonorders?Based on Babich (1992). Suppose that each week each of 300 families buys a gallon of orange juice from company A, B, or C. Let pA denote the probability that a gallon produced by company A is of unsatisfactory quality, and define pB and pC similarly for companies B and C. If the last gallon of juice purchased by a family is satisfactory, the next week they will purchase a gallon of juice from the same company. If the last gallon of juice purchased by a family is not satisfactory, the family will purchase a gallon from a competitor. Consider a week in which A families have purchased juice A, B families have purchased juice B, and C families have purchased juice C. Assume that families that switch brands during a period are allocated to the remaining brands in a manner that is proportional to the current market shares of the other brands. For example, if a customer switches from brand A, there is probability B/(B + C) that he will switch to brand B and probability C/(B + C) that he will switch to brand C. Suppose that the market is currently divided equally: 10,000 families for each of the three brands. a. After a year, what will the market share for each firm be? Assume pA = 0.10, pB = 0.15, and pC = 0.20. (Hint: You will need to use the RISKBINOMLAL function to see how many people switch from A and then use the RISKBENOMIAL function again to see how many switch from A to B and from A to C. However, if your model requires more RISKBINOMIAL functions than the number allowed in the academic version of @RISK, remember that you can instead use the BENOM.INV (or the old CRITBENOM) function to generate binomially distributed random numbers. This takes the form =BINOM.INV (ntrials, psuccess, RAND()).) b. Suppose a 1% increase in market share is worth 10,000 per week to company A. Company A believes that for a cost of 1 million per year it can cut the percentage of unsatisfactory juice cartons in half. Is this worthwhile? (Use the same values of pA, pB, and pC as in part a.)The customer loyalty model in Example 11.9 assumes that once a customer leaves (becomes disloyal), that customer never becomes loyal again. Assume instead that there are two probabilities that drive the model, the retention rate and the rejoin rate, with values 0.75 and 0.15, respectively. The simulation should follow a customer who starts as a loyal customer in year 1. From then on, at the end of any year when the customer was loyal, this customer remains loyal for the next year with probability equal to the retention rate. But at the end of any year the customer is disloyal, this customer becomes loyal the next year with probability equal to the rejoin rate. During the customers nth loyal year with the company, the companys mean profit from this customer is the nth value in the mean profit list in column B. Keep track of the same two outputs as in the example, and also keep track of the number of times the customer rejoins.33PSuppose that GLC earns a 2000 profit each time a person buys a car. We want to determine how the expected profit earned from a customer depends on the quality of GLCs cars. We assume a typical customer will purchase 10 cars during her lifetime. She will purchase a car now (year 1) and then purchase a car every five yearsduring year 6, year 11, and so on. For simplicity, we assume that Hundo is GLCs only competitor. We also assume that if the consumer is satisfied with the car she purchases, she will buy her next car from the same company, but if she is not satisfied, she will buy her next car from the other company. Hundo produces cars that satisfy 80% of its customers. Currently, GLC produces cars that also satisfy 80% of its customers. Consider a customer whose first car is a GLC car. If profits are discounted at 10% annually, use simulation to estimate the value of this customer to GLC. Also estimate the value of a customer to GLC if it can raise its customer satisfaction rating to 85%, to 90%, or to 95%. You can interpret the satisfaction value as the probability that a customer will not switch companies.35PA martingale betting strategy works as follows. You begin with a certain amount of money and repeatedly play a game in which you have a 40% chance of winning any bet. In the first game, you bet 1. From then on, every time you win a bet, you bet 1 the next time. Each time you lose, you double your previous bet. Currently you have 63. Assuming you have unlimited credit, so that you can bet more money than you have, use simulation to estimate the profit or loss you will have after playing the game 50 times.The game of Chuck-a-Luck is played as follows: You pick a number between 1 and 6 and toss three dice. If your number does not appear, you lose 1. If your number appears x times, you win x. On the average, use simulation to find the average amount of money you will win or lose on each play of the game.You have 5 and your opponent has 10. You flip a fair coin and if heads comes up, your opponent pays you 1. If tails comes up, you pay your opponent 1. The game is finished when one player has all the money or after 100 tosses, whichever comes first. Use simulation to estimate the probability that you end up with all the money and the probability that neither of you goes broke in 100 tosses.Assume a very good NBA team has a 70% chance of winning in each game it plays. During an 82-game season what is the average length of the teams longest winning streak? What is the probability that the team has a winning streak of at least 16 games? Use simulation to answer these questions, where each iteration of the simulation generates the outcomes of all 82 games.Consider the following card game. The player and dealer each receive a card from a 52-card deck. At the end of the game the player with the highest card wins; a tie goes to the dealer. (You can assume that Aces count 1, Jacks 11, Queens 12, and Kings 13.) After the player receives his card, he keeps the card if it is 7 or higher. If the player does not keep the card, the player and dealer swap cards. Then the dealer keeps his current card (which might be the players original card) if it is 9 or higher. If the dealer does not keep his card, he draws another card. Use simulation with at least 1000 iterations to estimate the probability that the player wins. (Hint: See the file Sampling Without Replacement.xlsx, one of the example files, to see a clever way of simulating cards from a deck so that the Same card is never dealt more than once.)42PYou now have 5000. You will toss a fair coin four times. Before each toss you can bet any amount of your money (including none) on the outcome of the toss. If heads comes up, you win the amount you bet. If tails comes up, you lose the amount you bet. Your goal is to reach 15,000. It turns out that you can maximize your chance of reaching 15,000 by betting either the money you have on hand or 15,000 minus the money you have on hand, whichever is smaller. Use simulation to estimate the probability that you will reach your goal with this betting strategy.You now have 10,000, all of which is invested in a sports team. Each year there is a 60% chance that the value of the team will increase by 60% and a 40% chance that the value of the team will decrease by 60%. Estimate the mean and median value of your investment after 50 years. Explain the large difference between the estimated mean and median.Suppose you have invested 25% of your portfolio in four different stocks. The mean and standard deviation of the annual return on each stock are shown in the file P11_46.xlsx. The correlations between the annual returns on the four stocks are also shown in this file. a. What is the probability that your portfolios annual return will exceed 30%? b. What is the probability that your portfolio will lose money during the year?47PBased on Marcus (1990). The Balboa mutual fund has beaten the Standard and Poors 500 during 11 of the last 13 years. People use this as an argument that you can beat the market. Here is another way to look at it that shows that Balboas beating the market 11 out of 13 times is not unusual. Consider 50 mutual funds, each of which has a 50% chance of beating the market during a given year. Use simulation to estimate the probability that over a 13-year period the best of the 50 mutual funds will beat the market for at least 11 out of 13 years. This probability turns out to exceed 40%, which means that the best mutual fund beating the market 11 out of 13 years is not an unusual occurrence after all.50P52PThe annual demand for Prizdol, a prescription drug manufactured and marketed by the NuFeel Company, is normally distributed with mean 50,000 and standard deviation 12,000. Assume that demand during each of the next 10 years is an independent random number from this distribution. NuFeel needs to determine how large a Prizdol plant to build to maximize its expected profit over the next 10 years. If the company builds a plant that can produce x units of Prizdol per year, it will cost 16 for each of these x units. NuFeel will produce only the amount demanded each year, and each unit of Prizdol produced will sell for 3.70. Each unit of Prizdol produced incurs a variable production cost of 0.20. It costs 0.40 per year to operate a unit of capacity. a. Among the capacity levels of 30,000, 35,000, 40,000, 45,000, 50,000, 55,000, and 60,000 units per year, which level maximizes expected profit? Use simulation to answer this question. b. Using the capacity from your answer to part a, NuFeel can be 95% certain that actual profit for the 10-year period will be between what two values?54PThe DC Cisco office is trying to predict the revenue it will generate next week. Ten deals may close next week. The probability of each deal closing and data on the possible size of each deal (in millions of dollars) are listed in the file P11_55.xlsx. Use simulation to estimate total revenue. Based on the simulation, the company can be 95% certain that its total revenue will be between what two numbers?A common decision is whether a company should buy equipment and produce a product in house or outsource production to another company. If sales volume is high enough, then by producing in house, the savings on unit costs will cover the fixed cost of the equipment. Suppose a company must make such a decision for a four-year time horizon, given the following data. Use simulation to estimate the probability that producing in house is better than outsourcing. If the company outsources production, it will have to purchase the product from the manufacturer for 25 per unit. This unit cost will remain constant for the next four years. The company will sell the product for 42 per unit. This price will remain constant for the next four years. If the company produces the product in house, it must buy a 500,000 machine that is depreciated on a straight-line basis over four years, and its cost of production will be 9 per unit. This unit cost will remain constant for the next four years. The demand in year 1 has a worst case of 10,000 units, a most likely case of 14,000 units, and a best case of 16,000 units. The average annual growth in demand for years 2-4 has a worst case of 7%, a most likely case of 15%, and a best case of 20%. Whatever this annual growth is, it will be the same in each of the years. The tax rate is 35%. Cash flows are discounted at 8% per year.Suppose you begin year 1 with 5000. At the beginning of each year, you put half of your money under a mattress and invest the other half in Whitewater stock. During each year, there is a 40% chance that the Whitewater stock will double, and there is a 60% chance that you will lose half of your investment. To illustrate, if the stock doubles during the first year, you will have 3750 under the mattress and 3750 invested in Whitewater during year 2. You want to estimate your annual return over a 30-year period. If you end with F dollars, your annual return is (F/5000)1/30 1. For example, if you end with 100,000, your annual return is 201/30 1 = 0.105, or 10.5%. Run 1000 replications of an appropriate simulation. Based on the results, you can be 95% certain that your annual return will be between which two values?You are considering a 10-year investment project. At present, the expected cash flow each year is 10,000. Suppose, however, that each years cash flow is normally distributed with mean equal to last years actual cash flow and standard deviation 1000. For example, suppose that the actual cash flow in year 1 is 12,000. Then year 2 cash flow is normal with mean 12,000 and standard deviation 1000. Also, at the end of year 1, your best guess is that each later years expected cash flow will be 12,000. a. Estimate the mean and standard deviation of the NPV of this project. Assume that cash flows are discounted at a rate of 10% per year. b. Now assume that the project has an abandonment option. At the end of each year you can abandon the project for the value given in the file P11_60.xlsx. For example, suppose that year 1 cash flow is 4000. Then at the end of year 1, you expect cash flow for each remaining year to be 4000. This has an NPV of less than 62,000, so you should abandon the project and collect 62,000 at the end of year 1. Estimate the mean and standard deviation of the project with the abandonment option. How much would you pay for the abandonment option? (Hint: You can abandon a project at most once. So in year 5, for example, you abandon only if the sum of future expected NPVs is less than the year 5 abandonment value and the project has not yet been abandoned. Also, once you abandon the project, the actual cash flows for future years are zero. So in this case the future cash flows after abandonment should be zero in your model.)Play Things is developing a new Lady Gaga doll. The company has made the following assumptions: The doll will sell for a random number of years from 1 to 10. Each of these 10 possibilities is equally likely. At the beginning of year 1, the potential market for the doll is two million. The potential market grows by an average of 4% per year. The company is 95% sure that the growth in the potential market during any year will be between 2.5% and 5.5%. It uses a normal distribution to model this. The company believes its share of the potential market during year 1 will be at worst 30%, most likely 50%, and at best 60%. It uses a triangular distribution to model this. The variable cost of producing a doll during year 1 has a triangular distribution with parameters 15, 17, and 20. The current selling price is 45. Each year, the variable cost of producing the doll will increase by an amount that is triangularly distributed with parameters 2.5%, 3%, and 3.5%. You can assume that once this change is generated, it will be the same for each year. You can also assume that the company will change its selling price by the same percentage each year. The fixed cost of developing the doll (which is incurred right away, at time 0) has a triangular distribution with parameters 5 million, 7.5 million, and 12 million. Right now there is one competitor in the market. During each year that begins with four or fewer competitors, there is a 25% chance that a new competitor will enter the market. Year t sales (for t 1) are determined as follows. Suppose that at the end of year t 1, n competitors are present (including Play Things). Then during year t, a fraction 0.9 0.1n of the company's loyal customers (last year's purchasers) will buy a doll from Play Things this year, and a fraction 0.2 0.04n of customers currently in the market ho did not purchase a doll last year will purchase a doll from Play Things this year. Adding these two provides the mean sales for this year. Then the actual sales this year is normally distributed with this mean and standard deviation equal to 7.5% of the mean. a. Use @RISK to estimate the expected NPV of this project. b. Use the percentiles in @ RISKs output to find an interval such that you are 95% certain that the companys actual NPV will be within this interval.An automobile manufacturer is considering whether to introduce a new model called the Racer. The profitability of the Racer depends on the following factors: The fixed cost of developing the Racer is triangularly distributed with parameters 3, 4, and 5, all in billions. Year 1 sales are normally distributed with mean 200,000 and standard deviation 50,000. Year 2 sales are normally distributed with mean equal to actual year 1 sales and standard deviation 50,000. Year 3 sales are normally distributed with mean equal to actual year 2 sales and standard deviation 50,000. The selling price in year 1 is 25,000. The year 2 selling price will be 1.05[year 1 price + 50 (% diff1)] where % diff1 is the number of percentage points by which actual year 1 sales differ from expected year 1 sales. The 1.05 factor accounts for inflation. For example, if the year 1 sales figure is 180,000, which is 10 percentage points below the expected year 1 sales, then the year 2 price will be 1.05[25,000 + 50( 10)] = 25,725. Similarly, the year 3 price will be 1.05[year 2 price + 50(% diff2)] where % diff2 is the percentage by which actual year 2 sales differ from expected year 2 sales. The variable cost in year 1 is triangularly distributed with parameters 10,000, 12,000, and 15,000, and it is assumed to increase by 5% each year. Your goal is to estimate the NPV of the new car during its first three years. Assume that the company is able to produce exactly as many cars as it can sell. Also, assume that cash flows are discounted at 10%. Simulate 1000 trials to estimate the mean and standard deviation of the NPV for the first three years of sales. Also, determine an interval such that you are 95% certain that the NPV of the Racer during its first three years of operation will be within this interval.It costs a pharmaceutical company 75,000 to produce a 1000-pound batch of a drug. The average yield from a batch is unknown but the best case is 90% yield (that is, 900 pounds of good drug will be produced), the most likely case is 85% yield, and the worst case is 70% yield. The annual demand for the drug is unknown, with the best case being 20,000 pounds, the most likely case 17,500 pounds, and the worst case 10,000 pounds. The drug sells for 125 per pound and leftover amounts of the drug can be sold for 30 per pound. To maximize annual expected profit, how many batches of the drug should the company produce? You can assume that it will produce the batches only once, before demand for the drug is known.65PRework the previous problem for a case in which the one-year warranty requires you to pay for the new device even if failure occurs during the warranty period. Specifically, if the device fails at time t, measured relative to the time it went into use, you must pay 300t for a new device. For example, if the device goes into use at the beginning of April and fails nine months later, at the beginning of January, you must pay 225. The reasoning is that you got 9/12 of the warranty period for use, so you should pay that fraction of the total cost for the next device. As before, how-ever, if the device fails outside the warranty period, you must pay the full 300 cost for a new device.68PThe Tinkan Company produces one-pound cans for the Canadian salmon industry. Each year the salmon spawn during a 24-hour period and must be canned immediately. Tinkan has the following agreement with the salmon industry. The company can deliver as many cans as it chooses. Then the salmon are caught. For each can by which Tinkan falls short of the salmon industrys needs, the company pays the industry a 2 penalty. Cans cost Tinkan 1 to produce and are sold by Tinkan for 2 per can. If any cans are left over, they are returned to Tinkan and the company reimburses the industry 2 for each extra can. These extra cans are put in storage for next year. Each year a can is held in storage, a carrying cost equal to 20% of the cans production cost is incurred. It is well known that the number of salmon harvested during a year is strongly related to the number of salmon harvested the previous year. In fact, using past data, Tinkan estimates that the harvest size in year t, Ht (measured in the number of cans required), is related to the harvest size in the previous year, Ht1, by the equation Ht = Ht1et where et is normally distributed with mean 1.02 and standard deviation 0.10. Tinkan plans to use the following production strategy. For some value of x, it produces enough cans at the beginning of year t to bring its inventory up to x+Ht, where Ht is the predicted harvest size in year t. Then it delivers these cans to the salmon industry. For example, if it uses x = 100,000, the predicted harvest size is 500,000 cans, and 80,000 cans are already in inventory, then Tinkan produces and delivers 520,000 cans. Given that the harvest size for the previous year was 550,000 cans, use simulation to help Tinkan develop a production strategy that maximizes its expected profit over the next 20 years. Assume that the company begins year 1 with an initial inventory of 300,000 cans.70PIn this version of dice blackjack, you toss a single die repeatedly and add up the sum of your dice tosses. Your goal is to come as close as possible to a total of 7 without going over. You may stop at any time. If your total is 8 or more, you lose. If your total is 7 or less, the house then tosses the die repeatedly. The house stops as soon as its total is 4 or more. If the house totals 8 or more, you win. Otherwise, the higher total wins. If there is a tie, the house wins. Consider the following strategies: Keep tossing until your total is 3 or more. Keep tossing until your total is 4 or more. Keep tossing until your total is 5 or more. Keep tossing until your total is 6 or more. Keep tossing until your total is 7 or more. For example, suppose you keep tossing until your total is 4 or more. Here are some examples of how the game might go: You toss a 2 and then a 3 and stop for total of 5. The house tosses a 3 and then a 2. You lose because a tie goes to the house. You toss a 3 and then a 6. You lose. You toss a 6 and stop. The house tosses a 3 and then a 2. You win. You toss a 3 and then a 4 for total of 7. The house tosses a 3 and then a 5. You win. Note that only 4 tosses need to be generated for the house, but more tosses might need to be generated for you, depending on your strategy. Develop a simulation and run it for at least 1000 iterations for each of the strategies listed previously. For each strategy, what are the two values so that you are 95% sure that your probability of winning is between these two values? Which of the five strategies appears to be best?76PIt is January 1 of year 0, and Merck is trying to determine whether to continue development of a new drug. The following information is relevant. You can assume that all cash flows occur at the ends of the respective years. Clinical trials (the trials where the drug is tested on humans) are equally likely to be completed in year 1 or 2. There is an 80% chance that clinical trials will succeed. If these trials fail, the FDA will not allow the drug to be marketed. The cost of clinical trials is assumed to follow a triangular distribution with best case 100 million, most likely case 150 million, and worst case 250 million. Clinical trial costs are incurred at the end of the year clinical trials are completed. If clinical trials succeed, the drug will be sold for five years, earning a profit of 6 per unit sold. If clinical trials succeed, a plant will be built during the same year trials are completed. The cost of the plant is assumed to follow a triangular distribution with best case 1 billion, most likely case 1.5 billion, and worst case 2.5 billion. The plant cost will be depreciated on a straight-line basis during the five years of sales. Sales begin the year after successful clinical trials. Of course, if the clinical trials fail, there are no sales. During the first year of sales, Merck believe sales will be between 100 million and 200 million units. Sales of 140 million units are assumed to be three times as likely as sales of 120 million units, and sales of 160 million units are assumed to be twice as likely as sales of 120 million units. Merck assumes that for years 2 to 5 that the drug is on the market, the growth rate will be the same each year. The annual growth in sales will be between 5% and 15%. There is a 25% chance that the annual growth will be 7% or less, a 50% chance that it will be 9% or less, and a 75% chance that it will be 12% or less. Cash flows are discounted 15% per year, and the tax rate is 40%. Use simulation to model Mercks situation. Based on the simulation output, would you recommend that Merck continue developing? Explain your reasoning. What are the three key drivers of the projects NPV? (Hint: The way the uncertainty about the first year sales is stated suggests using the General distribution, implemented with the RISKGENERAL function. Similarly, the way the uncertainty about the annual growth rate is stated suggests using the Cumul distribution, implemented with the RISKCUMUL function. Look these functions up in @RISKs online help.)Suppose you are an HR (human resources) manager at a big university, and you sense that the university is becoming too top-heavy with full professors. That is, there do not seem to be as many younger professors at the assistant and associate levels as there ought to be. How could you study this problem with a simulation model, using current and/or proposed promotions, hiring, firing, and retirement policies?You are an avid basketball fan, and you would like to build a simulation model of an entire game so that you could compare two different strategies, such as man-to-man versus zone defense. Is this possible? What might make this simulation model difficult to build?Suppose you are a financial analyst and your company runs many simulation models to estimate the profitability of its projects. If you had to choose just two measures of the distribution of any important output such as net profit to report, which two would you choose? Why? What information would be missing if you reported only these two measures? How could they be misleading?Software development is an inherently risky and uncertain process. For example, there are many examples of software that couldnt be finished by the scheduled release datebugs still remained and features werent ready. (Many people believe this was the case with Office 2007.) How might you simulate the development of a software product? What random inputs would be required? Which outputs would be of interest? Which measures of the probability distributions of these outputs would be most important?Health care is continually in the news. Can (or should) simulation be used to help solve, or at least study, some of the difficult problems associated with health care? Provide at least two examples where simulation might be useful.1PExplain the basic relationship between the exponential distribution and a Poisson process. Also, explain how the exponential distribution and the Poisson distribution are fundamentally different. (Hint: What type of data does each describe?)3P4P5P6P7P8P9P10P11P12P13P14P15P16P17P18P19P20P21P22POn average, 100 customers arrive per hour at the Gotham City Bank. The average service time for each customer is one minute. Service times and interarrival times are exponentially distributed. The manager wants to ensure that no more than 1% of all customers will have to wait in line for more than five minutes. If the bank follows the policy of having all customers join a single line, how many tellers must the bank hire?24P25P26P27P28P29P30P31P32P33P34P35PTwo one-barber shops sit side by side in Dunkirk Square. Each shop can hold a maximum of four people, and any potential customer who finds a shop full will not wait for a haircut. Barber 1 charges 15 per haircut and takes an average of 15 minutes to complete a haircut. Barber 2 charges 11 per haircut and takes an average of 10 minutes to complete a haircut. On average, 10 potential customers arrive per hour at each barber shop. Of course, a potential customer becomes an actual customer only if he or she finds that the shop is not full. Assuming that interarrival times and haircut times are exponential, which barber will earn more money?37P46P47P48P49P50P51P52P54P56P57P58P59P60P61PThe file P13_01.xlsx contains the monthly number of airline tickets sold by a travel agency. a. Does a linear trend appear to fit these data well? If so, estimate and interpret the linear trend model for this time series. Also, interpret the R2 and se values. b. Provide an indication of the typical forecast error generated by the estimated model in part a. c. Is there evidence of some seasonal pattern in these sales data? If so, characterize the seasonal pattern.The file P13_02.xlsx contains five years of monthly data on sales (number of units sold) for a particular company. The company suspects that except for random noise, its sales are growing by a constant percentage each month and will continue to do so for at least the near future. a. Explain briefly whether the plot of the series visually supports the companys suspicion. b. By what percentage are sales increasing each month? c. What is the MAPE for the forecast model in part b? In words, what does it measure? Considering its magnitude, does the model seem to be doing a good job? d. In words, how does the model make forecasts for future months? Specifically, given the forecast value for the last month in the data set, what simple arithmetic could you use to obtain forecasts for the next few months?The file P13_03.xlsx contains monthly data on production levels and production costs during a four-year period for a company that produces a single product. Use simple regression on all of the data to see how Total Cost is related to Units Produced. Use the resulting equation to predict total cost in month 49, given that the proposed production level for that month is 450 units. Do you see anything wrong with the analysis? How should you modify your analysis if your main task is to find an equation useful for predicting future costs, and you know that the company installed new machinery at the end of month 18? Write a concise memo to management that describes your findings.The file P13_04.xlsx lists the monthly sales for a company (in millions of dollars) for a 10-year period. a. Fit an exponential trend line to these data. b. By what percentage do you estimate that the company will grow each month? c. Why cant a high rate of exponential growth continue for a long time? d. Rather than an exponential curve, what type of curve might better represent the growth of a new technology?Management of a home appliance store wants to understand the growth pattern of the monthly sales of a new technology device over the past two years. The managers have recorded the relevant data in the file P13_05.xlsx. Have the sales of this device been growing linearly over the past 24 months? By examining the results of a linear trend line, explain why or why not.Do the sales prices of houses in a given community vary systematically with their sizes (as measured in square feet)? Answer this question by estimating a simple regression equation where the sales price of the house is the dependent variable, and the size of the house is the explanatory variable. Use the sample data given in P13_06.xlsx. Interpret your estimated equation, the associated R-square value, and the associated standard error of estimate.7PThe management of a technology company is trying to determine the variable that best explains the variation of employee salaries using a sample of 52 full-time employees; see the file P13_08.xlsx. Estimate simple linear regression equations to identify which of the following has the strongest linear relationship with annual salary: the employees gender, age, number of years of relevant work experience prior to employment at the company, number of years of employment at the company, or number of years of post secondary education. Provide support for your conclusion.9PSometimes curvature in a scatterplot can be fit adequately (especially to the naked eye) by several trend lines. We discussed the exponential trend line, and the power trend line is discussed in the previous problem. Still another fairly simple trend line is the parabola, a polynomial of order 2 (also called a quadratic). For the demand-price data in the file P13_10.xlsx, fit all three of these types of trend lines to the data, and calculate the MAPE for each. Which provides the best fit? (Hint: Note that a polynomial of order 2 is still another of Excels Trend line options.)12PA trucking company wants to predict the yearly maintenance expense (Y) for a truck using the number of miles driven during the year (X1) and the age of the truck (X2, in years) at the beginning of the year. The company has gathered the data given in the file P13_13.xlsx. Note that each observation corresponds to a particular truck. Estimate a multiple regression equation using the given data. Interpret each of the estimated regression coefficients. Also, interpret the standard error of estimate and the R-square value for these data.An antique collector believes that the price received for a particular item increases with its age and with the number of bidders. The file P13_14.xlsx contains data on these three variables for 32 recently auctioned comparable items. Estimate a multiple regression equation using the given data. Interpret each of the estimated regression coefficients. Is the antique collector correct in believing that the price received for the item increases with its age and with the number of bidders? Interpret the standard error of estimate and the R-square value for these data.Stock market analysts are continually looking for reliable predictors of stock prices. Consider the problem of modeling the price per share of electric utility stocks (Y). Two variables thought to influence this stock price are return on average equity (X1) and annual dividend rate (X2). The stock price, returns on equity, and dividend rates on a randomly selected day for 16 electric utility stocks are provided in the file P13_15.xlsx. Estimate a multiple regression equation using the given data. Interpret each of the estimated regression coefficients. Also, interpret the standard error of estimate and the R-square value for these data.Suppose that a regional express delivery service company wants to estimate the cost of shipping a package (Y) as a function of cargo type, where cargo type includes the following possibilities: fragile, semifragile, and durable. Costs for 15 randomly chosen packages of approximately the same weight and same distance shipped, but of different cargo types, are provided in the file P13_16.xlsx. a. Estimate a regression equation using the given sample data, and interpret the estimated regression coefficients. b. According to the estimated regression equation, which cargo type is the most costly to ship? Which cargo type is the least costly to ship? c. How well does the estimated equation fit the given sample data? How might the fit be improved? d. Given the estimated regression equation, predict the cost of shipping a package with semifragile cargo.The owner of a restaurant in Bloomington, Indiana, has recorded sales data for the past 19 years. He has also recorded data on potentially relevant variables. The data are listed in the file P13_17.xlsx. a. Estimate a simple regression equation involving annual sales (the dependent variable) and the size of the population residing within 10 miles of the restaurant (the explanatory variable). Interpret R-square for this regression. b. Add another explanatory variableannual advertising expendituresto the regression equation in part a. Estimate and interpret this expanded equation. How does the R-square value for this multiple regression equation compare to that of the simple regression equation estimated in part a? Explain any difference between the two R-square values. How can you use the adjusted R-squares for a comparison of the two equations? c. Add one more explanatory variable to the multiple regression equation estimated in part b. In particular, estimate and interpret the coefficients of a multiple regression equation that includes the previous years advertising expenditure. How does the inclusion of this third explanatory variable affect the R-square, compared to the corresponding values for the equation of part b? Explain any changes in this value. What does the adjusted R-square for the new equation tell you?The file P13_19.xlsx contains the weekly sales of a particular brand of paper towels at a supermarket for a one-year period. a. Using a span of 3, forecast the sales of this product for the next 10 weeks with the moving averages method. How well does this method with span 3 forecast the known observations in this series? b. Repeat part a with a span of 10. c. Which of these two spans appears to be more appropriate? Justify your choice.The file P13_20.xlsx contains the monthly sales of iPod cases at an electronics store for a two-year period. Use the moving averages method, with spans of your choice, to forecast sales for the next six months. Does this method appear to track sales well? If not, what might be the reason?The file P13_21.xlsx contains the weekly sales of rakes at a hardware store for a two-year period. Use the moving averages method, with spans of your choice, to forecast sales for the next 30 weeks. Does this method appear to track sales well? If not, what might be the reason?The file P13_22.xlsx contains total monthly U.S. retail sales data. While holding out the final six months of observations for validation purposes, use the method of moving averages with a carefully chosen span to forecast U.S. retail sales in the next year. Comment on the performance of your model. What makes this time series more challenging to forecast?You have been assigned to forecast the number of aircraft engines ordered each month by Commins Engine Company. At the end of February, the forecast is that 100 engines will be ordered during April. During March, 120 engines are ordered. Using = 0.3 and the basic equation for simple exponential smoothing, determine a forecast (at the end of March) for the number of orders placed during April. Answer the same question for May.Simple exponential smoothing with = 0.3 is being used to forecast sales of digital cameras at Lowland Appliance. Forecasts are made on a monthly basis. After August camera sales are observed, the forecast for September is 100 cameras. Suppose 120 cameras are sold in September. Use the basic equation for simple exponential smoothing to forecast October sales and November sales.The file P13_25.xlsx contains the quarterly numbers of applications for home mortgage loans at a branch office of Northern Central Bank. a. Create a time series chart of the data. Based on what you see, which of the exponential smoothing models do you think will provide the best forecasting model? Why? b. Use simple exponential smoothing to forecast these data, using a smoothing constant of 0.1. c. Repeat part b, but search for the smoothing constant that makes RMSE as small as possible. Does it make much of an improvement over the model in part b? Is it guaranteed to produce better forecasts for the future?The file P13_26.xlsx contains the monthly number of airline tickets sold by the CareFree Travel Agency. a. Create a time series chart of the data. Based on what you see, which of the exponential smoothing models do you think will provide the best forecasting model? Why? b. Use simple exponential smoothing to forecast these data, using a smoothing constant of 0.1. c. Repeat part b, but search for the smoothing constant that makes RMSE as small as possible. Does it make much of an improvement over the model in part b?The file P13_27.xlsx contains yearly data on the proportion of Americans under the age of 18 living below the poverty level. a. Create a time series chart of the data. Based on what you see, which of the exponential smoothing models do you think will provide the best forecasting model? Why? b. Use simple exponential smoothing to forecast these data, using a smoothing constant of 0.1. c. Repeat part b, but search for the smoothing constant that makes RMSE as small as possible. Create a chart of the series with the forecasts superimposed from this optimal smoothing constant. Does it make much of an improvement over the model in part b? d. Write a short report to summarize your results. Considering the chart in part c, would you say the forecasts are good?The file P13_28.xlsx contains monthly retail sales of U.S. liquor stores. a. Is seasonality present in these data? If so, characterize the seasonality pattern. b. Use Winters method to forecast this series with smoothing constants = = 0.1 and = 0.3. Does the forecast series seem to track the seasonal pattern well? What are your forecasts for the next 12 months?The file P13_29.xlsx contains monthly time series data for total U.S. retail sales of building materials (which includes retail sales of building materials, hardware and garden supply stores, and mobile home dealers). a. Is seasonality present in these data? If so, characterize the seasonality pattern. b. Use Winters method to forecast this series with smoothing constants = = 0.1 and = 0.3. Does the forecast series seem to track the seasonal pattern well? What are your forecasts for the next 12 months?A version of simple exponential smoothing can be used to predict the outcome of sporting events. To illustrate, consider pro football. We first assume that all games are played on a neutral field. Before each day of play, we assume that each team has a rating. For example, if the rating for the Bears is 110 and the rating for the Bengals is 16, you would predict the Bears to beat the Bengals by 10 6 = 4 points. Suppose that the Bears play the Bengals and win by 20 points. For this game, you under predicted the Bears performance by 20 4 = 16 points. The best for pro football is = 0.10. After the game, you therefore increase the Bears rating by 16(0.1) = 1.6 and decrease the Bengals rating by 1.6 points. In a rematch, the Bears would be favored by (10 + 1.6) (6 1.6) = 7.2 points. a. It can be shown that the basic equation for simple exponential smoothing is equivalent to the equation Lt = Lt1 + Et. How does the approach in this problem relate to this latter equation? b. Suppose that the home field advantage in pro football is 3 points; that is, home teams tend to outscore visiting teams by an average of 3 points a game. How could the home field advantage be incorporated into this system? c. How could you determine the best for pro football? d. How might you determine ratings for each team at the beginning of the season? e. Suppose you try to apply the previous method to predict pro football (16-game schedule), college football (12-game schedule), college basketball (over 30-game schedule), and pro basketball (82-game schedule). Which sport would probably have the smallest optimal ? Which sport would probably have the largest optimal ? f. Why would this approach probably yield poor forecasts for Major League Baseball?31P32PManagement of a home appliance store would like to understand the growth pattern of the monthly sales of Blu-ray disc players over the past two years. Managers have recorded the relevant data in the file P13_33.xlsx. a. Create a scatterplot for these data. Comment on the observed behavior of monthly sales at this store over time. b. Estimate an appropriate regression equation to explain the variation of monthly sales over the given time period. Interpret the estimated regression coefficients. c. Analyze the estimated equations residuals. Do they suggest that the regression equation is adequate? If not, return to part b and revise your equation. Continue to revise the equation until the results are satisfactory.A small computer chip manufacturer wants to forecast monthly ozperating costs as a function of the number of units produced during a month. The company has collected the 16 months of data in the file P13_34.xlsx. a. Determine an equation that can be used to predict monthly production costs from units produced. Are there any outliers? b. How could the regression line obtained in part a be used to determine whether the company was efficient or inefficient during any particular month?The file P13_35.xlsx contains the amount of money spent advertising a product (in thousands of dollars) and the number of units sold (in millions) for eight months. a. Assume that the only factor influencing monthly sales is advertising. Fit the following two curves to these data: linear (Y = a + bX) and power (Y = aXb). Which equation best fits the data? b. Interpret the best-fitting equation. c. Using the best-fitting equation, predict sales during a month in which 60,000 is spent on advertising.36P37P39PThe Baker Company wants to develop a budget to predict how overhead costs vary with activity levels. Management is trying to decide whether direct labor hours (DLH) or units produced is the better measure of activity for the firm. Monthly data for the preceding 24 months appear in the file P13_40.xlsx. Use regression analysis to determine which measure, DLH or Units (or both), should be used for the budget. How would the regression equation be used to obtain the budget for the firms overhead costs?41PThe file P13_42.xlsx contains monthly data on consumer revolving credit (in millions of dollars) through credit unions. a. Use these data to forecast consumer revolving credit through credit unions for the next 12 months. Do it in two ways. First, fit an exponential trend to the series. Second, use Holts method with optimized smoothing constants. b. Which of these two methods appears to provide the best forecasts? Answer by comparing their MAPE values.43P44P45P46P49PThe file P14_01.xlsx contains data on 100 consumers who drink beer. Some of them prefer light beer, and others prefer regular beer. A major beer producer believes that the following variables might be useful in discriminating between these two groups: gender, marital status, annual income level, and age. a. Use logistic regression to classify the consumers on the basis of these explanatory variables. How successful is it? Which variables appear to be most important in the classification? b. Consider a new customer: Male, Married, Income 42,000, Age 47. Use the logistic regression equation to estimate the probability that this customer prefers Regular. How would you classify this person?2P3P4P7P8P9P11P15P
Page: [1][2][3]