BuyFindarrow_forward

Elements Of Modern Algebra

8th Edition
Gilbert + 2 others
ISBN: 9781285463230

Solutions

Chapter
Section
BuyFindarrow_forward

Elements Of Modern Algebra

8th Edition
Gilbert + 2 others
ISBN: 9781285463230
Textbook Problem
1 views

Label each of the following statements as either true or false.

Let g : A B and f : B C such that f g is one-to-one. Then both f and g are one-to-one.

To determine

Whether the statement, “Let g:AB and f:BC such that fg is one-to-one. Then both f and g are one-to-one” is true or false.

Explanation

Formula used:

1) To show that f is not one-to-one, find two elements a1A and a2A such that a1a2 and f(a1)=f(a2)

2) To show that f is one-to-one by assuming that f(a1)=f(a2) and proving that this implies that a1=a2

Explanation:

Consider the statement, “Let g:AB and f:BC such that fg is one-to-one. Then both f and g are one-to-one.”

Let f: defined by f(x)=x2 and

g: defined by g(x)=ex

By using the definition of a composite function, fg: is defined by

(fg)(x)=f(g(x))=f(ex)=(ex)2=e2x

Now we check whether these mappings are one-to-one.

Let x1,x2.

Consider g(x1)=g(x2)

By using the given mapping,

ex1=ex2

By taking natural logarithm function from both sides, get

ln(ex1)=ln(ex2)

By using the rule of logarithm function,

x1ln(e)=x2ln(e)

ln(e)=1 implies that

x1=x2

This shows that mapping g: defined by g(x)=ex is one-to-one

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started
Sect-1.1 P-1ESect-1.1 P-2ESect-1.1 P-3ESect-1.1 P-4ESect-1.1 P-5ESect-1.1 P-6ESect-1.1 P-7ESect-1.1 P-8ESect-1.1 P-9ESect-1.1 P-10ESect-1.1 P-11ESect-1.1 P-12ESect-1.1 P-13ESect-1.1 P-14ESect-1.1 P-15ESect-1.1 P-16ESect-1.1 P-17ESect-1.1 P-18ESect-1.1 P-19ESect-1.1 P-20ESect-1.1 P-21ESect-1.1 P-22ESect-1.1 P-23ESect-1.1 P-24ESect-1.1 P-25ESect-1.1 P-26ESect-1.1 P-27ESect-1.1 P-28ESect-1.1 P-29ESect-1.1 P-30ESect-1.1 P-31ESect-1.1 P-32ESect-1.1 P-33ESect-1.1 P-34ESect-1.1 P-35ESect-1.1 P-36ESect-1.1 P-37ESect-1.1 P-38ESect-1.1 P-39ESect-1.1 P-40ESect-1.1 P-41ESect-1.1 P-42ESect-1.1 P-43ESect-1.2 P-1TFESect-1.2 P-2TFESect-1.2 P-3TFESect-1.2 P-4TFESect-1.2 P-5TFESect-1.2 P-6TFESect-1.2 P-7TFESect-1.2 P-8TFESect-1.2 P-9TFESect-1.2 P-1ESect-1.2 P-2ESect-1.2 P-3ESect-1.2 P-4ESect-1.2 P-5ESect-1.2 P-6ESect-1.2 P-7ESect-1.2 P-8ESect-1.2 P-9ESect-1.2 P-10ESect-1.2 P-11ESect-1.2 P-12ESect-1.2 P-13ESect-1.2 P-14ESect-1.2 P-15ESect-1.2 P-16ESect-1.2 P-17ESect-1.2 P-18ESect-1.2 P-19ESect-1.2 P-20ESect-1.2 P-21ESect-1.2 P-22ESect-1.2 P-23ESect-1.2 P-24ESect-1.2 P-25ESect-1.2 P-26ESect-1.2 P-27ESect-1.2 P-28ESect-1.3 P-1TFESect-1.3 P-2TFESect-1.3 P-3TFESect-1.3 P-4TFESect-1.3 P-5TFESect-1.3 P-6TFESect-1.3 P-1ESect-1.3 P-2ESect-1.3 P-3ESect-1.3 P-4ESect-1.3 P-5ESect-1.3 P-6ESect-1.3 P-7ESect-1.3 P-8ESect-1.3 P-9ESect-1.3 P-10ESect-1.3 P-11ESect-1.3 P-12ESect-1.4 P-1TFESect-1.4 P-2TFESect-1.4 P-3TFESect-1.4 P-4TFESect-1.4 P-5TFESect-1.4 P-6TFESect-1.4 P-7TFESect-1.4 P-8TFESect-1.4 P-9TFESect-1.4 P-1ESect-1.4 P-2ESect-1.4 P-3ESect-1.4 P-4ESect-1.4 P-5ESect-1.4 P-6ESect-1.4 P-7ESect-1.4 P-8ESect-1.4 P-9ESect-1.4 P-10ESect-1.4 P-11ESect-1.4 P-12ESect-1.4 P-13ESect-1.4 P-14ESect-1.4 P-15ESect-1.4 P-16ESect-1.5 P-1TFESect-1.5 P-2TFESect-1.5 P-3TFESect-1.5 P-1ESect-1.5 P-2ESect-1.5 P-3ESect-1.5 P-4ESect-1.5 P-5ESect-1.5 P-6ESect-1.5 P-7ESect-1.5 P-8ESect-1.5 P-9ESect-1.5 P-10ESect-1.6 P-1TFESect-1.6 P-2TFESect-1.6 P-3TFESect-1.6 P-4TFESect-1.6 P-5TFESect-1.6 P-6TFESect-1.6 P-7TFESect-1.6 P-8TFESect-1.6 P-9TFESect-1.6 P-10TFESect-1.6 P-11TFESect-1.6 P-12TFESect-1.6 P-1ESect-1.6 P-2ESect-1.6 P-3ESect-1.6 P-4ESect-1.6 P-5ESect-1.6 P-6ESect-1.6 P-7ESect-1.6 P-8ESect-1.6 P-9ESect-1.6 P-10ESect-1.6 P-11ESect-1.6 P-12ESect-1.6 P-13ESect-1.6 P-14ESect-1.6 P-15ESect-1.6 P-16ESect-1.6 P-17ESect-1.6 P-18ESect-1.6 P-19ESect-1.6 P-20ESect-1.6 P-21ESect-1.6 P-22ESect-1.6 P-23ESect-1.6 P-24ESect-1.6 P-25ESect-1.6 P-26ESect-1.6 P-27ESect-1.6 P-28ESect-1.6 P-29ESect-1.6 P-30ESect-1.6 P-31ESect-1.6 P-32ESect-1.7 P-1TFESect-1.7 P-2TFESect-1.7 P-3TFESect-1.7 P-4TFESect-1.7 P-5TFESect-1.7 P-6TFESect-1.7 P-1ESect-1.7 P-2ESect-1.7 P-3ESect-1.7 P-4ESect-1.7 P-5ESect-1.7 P-6ESect-1.7 P-7ESect-1.7 P-8ESect-1.7 P-9ESect-1.7 P-10ESect-1.7 P-11ESect-1.7 P-12ESect-1.7 P-13ESect-1.7 P-14ESect-1.7 P-15ESect-1.7 P-16ESect-1.7 P-17ESect-1.7 P-18ESect-1.7 P-19ESect-1.7 P-20ESect-1.7 P-21ESect-1.7 P-22ESect-1.7 P-23ESect-1.7 P-24ESect-1.7 P-25ESect-1.7 P-26ESect-1.7 P-27ESect-1.7 P-28ESect-1.7 P-29ESect-1.7 P-30E

Additional Math Solutions

Find more solutions based on key concepts

Show solutions add

Prove that abxdx=b2a22.

Single Variable Calculus: Early Transcendentals, Volume I

What is an indeterminate form? Illustrate with an example.

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

In Exercises 5-8, find the limit. limx0(x+x)2x2x

Calculus: An Applied Approach (MindTap Course List)

Evaluate tanxdx.

Single Variable Calculus: Early Transcendentals

Evaluate . e + 1

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th

The point P graphed at the right has spherical coordinates:

Study Guide for Stewart's Multivariable Calculus, 8th

Given: and intersect Prove: at ;

Elementary Geometry for College Students

Solve each absolute value equation for x. |x+32|=|2x3|

College Algebra (MindTap Course List)

Simplify. 15(r2+r)+(r214)

Mathematics For Machine Technology