Chemistry: Principles and Practice
Chemistry: Principles and Practice
3rd Edition
ISBN: 9780534420123
Author: Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 15, Problem 15.64QE

(a)

Interpretation Introduction

Interpretation:

pH for 0.050 MHI solution has to be determined.

Concept Introduction:

A weak acid in water produces a hydrogen ion and conjugate base. When weak acid dissolves in water, some acid molecules transfer proton to water.

In solution of weak acid, the actual concentration of the acid molecules becomes less because partial dissociation of acid has occurred and lost protons to form hydrogen ions.

The reaction is as follows:

  HA(aq)+H2O(l)H3O+(aq)+A(aq)

The reaction is as follows:

  HA(aq)+H2O(l)H3O+(aq)+A(aq)

The expression for Ka is as follows:

  Ka=[H3O+][A][HA]

For value of Ka of different acids.(refer to 15.6 in the book).

The negative logarithm of molar concentration of hydronium ion is called pH. The expression for pH is as follows:

    pH=log10[H3O+]        (1)

(a)

Expert Solution
Check Mark

Answer to Problem 15.64QE

pH for 0.050 MHF solution is 1.30103.

Explanation of Solution

The chemical equation for ionization of HI is as follows:

    HI+H2OH3O++I

The concentration of HI is 0.050 M.

Also, HI is ionized into H3O+ and I. Therefore, concentration of H3O+ is equal to I.

Let us assume the concentration of H3O+ and I be x.

The ICE table for the above reaction is as follows:

  EquationHI+H2OH3O++IInitial(M)0.050000Change(M)x +x+xEquilibrium(M)0.050xxx

The expression for Ka for ionization of HI is as follows:

  Ka=[H3O+][I][HI]        (2)

Substitute 0.050 M for [HI], x for [H3O+], x for [I] and 2.0×109 for Ka in equation (2), the equation needed to solve for the concentration of the hydrogen ion is as follows:

  2.0×109=(x)(x)0.050x

Rearrange above equation to obtain the required quadratic equation to compute the concentration of hydrogen ion as follows:

  x2+2.0×109x0.1×109=0

Solve for x, therefore the concentration of hydrogen ion is as calculated follows:

  x=0.05

Or,

  x=2×109

Neglect, the negative value of x as concentration cannot be negative.

Therefore, concentration of H3O+ is 0.05.

Substitute 0.05 for [H3O+] in equation (1), pH is calculated as follows:

  pH=log10[0.05]=1.30103

Hence, pH for 0.050 MHI solution is 1.30103.

(b)

Interpretation Introduction

Interpretation:

pH for 0.85 MHF solution has to be determined.

Concept Introduction:

Refer to part (a).

(b)

Expert Solution
Check Mark

Answer to Problem 15.64QE

pH for 0.85 MHF solution is 1.64153.

Explanation of Solution

The chemical equation for ionization of HF is as follows:

    HF+H2OH3O++F

The concentration of HF is 0.85 M.

Also, HF is ionized into H3O+ and F. Therefore concentration of H3O+ is equal to F.

Consider the concentration of H3O+ and F be x.

The ICE table for the above reaction is as follows:

  EquationHF+H2OH3O++FInitial(M)0.85000Change(M)x +x+xEquilibrium(M)0.85xxx

The expression for Ka for ionization of HF is as follows:

  Ka=[H3O+][F][HF]        (3)

Substitute 0.85 M for [HF], x for [H3O+], x for [F] and 6.3×104 for Ka in equation (3), the equation needed to solve for the concentration of the hydrogen ion is as follows:

  6.3×104=(x)(x)0.85x

Rearrange above equation to obtain the required quadratic equation to compute the concentration of hydrogen ion as follows:

  x2+6.3×104x5.355×104=0

Solve for x, therefore the concentration of hydrogen ion is as calculated follows:

  x=0.022828

Or,

  x=0.022828

Neglect, the negative value of x as concentration cannot be negative.

Therefore concentration of [H3O+] is 0.022828.

Substitute 0.022828 for [H3O+] in equation (1), pH is calculated as follows:

  pH=log10[0.022828]=1.64153

Hence, pH for 0.85 MHF solution is 1.64153.

(c)

Interpretation Introduction

Interpretation:

pH for 0.15 MCH3COOH solution has to be determined.

Concept Introduction:

Refer to part (a).

(c)

Expert Solution
Check Mark

Answer to Problem 15.64QE

pH for 0.15 MCH3COOH is 2.28507.

Explanation of Solution

The chemical equation for ionization of CH3COOH is as follows:

    CH3COOH+H2OH3O++CH3COO

The concentration of CH3COOH is 0.15 M.

Also, CH3COOH is ionized into H3O+ and CH3COO. Therefore, concentration of H3O+ is equal to CH3COO.

Let us assume the concentration of H3O+ and CH3COO be x.

The ICE table for the above reaction is as follows:

  EquationCH3COOH+H2OH3O++CH3COOInitial(M)0.15000Change(M)x +x+xEquilibrium(M)0.15xxx

The expression for Ka for ionization of CH3COOH  is as follows:

  Ka=[H3O+][CH3COO][CH3COOH]        (4)

Substitute 0.15 M for [CH3COOH], x for [H3O+], x for [C6H5COO] and 1.8×105 for Ka in equation (4), the equation needed to solve for the concentration of the hydrogen ion is as follows:

  1.8×105=(x)(x)0.15x

Rearrange above equation to obtain the required quadratic equation to compute the concentration of hydrogen ion as follows:

  x2+1.8×105x0.27×104=0

Solve for x, therefore the concentration of hydrogen ion is as calculated follows:

  x=0.00518716

Or,

  x=0.00518716

Neglect, the negative value of x as concentration cannot be negative.

Therefore concentration of H3O+ is 0.00518716.

Substitute 0.00518716 for [H3O+] in equation (1), pH is calculated as follows:

  pH=log10[0.00518716]=2.28507

Hence, pH for 0.15 MCH3COOH is 2.28507.

(d)

Interpretation Introduction

Interpretation:

pH for 0.017 MC6H5COOH solution has to be determined.

Concept Introduction:

Refer to part (a).

(d)

Expert Solution
Check Mark

Answer to Problem 15.64QE

pH for 0.017 MC6H5COOH solution is 2.99832.

Explanation of Solution

The chemical equation for ionization of C6H5COOH is as follows:

    C6H5COOH+H2OH3O++C6H5COO

The concentration of C6H5COOH is 0.017 M.

Also, C6H5COOH is ionized into H3O+ and C6H5COO. Therefore concentration of H3O+ is equal to C6H5COO.

Let us assume the concentration of H3O+ and C6H5COO be x.

The ICE table for the above reaction is as follows:

  EquationC6H5COOH+H2OH3O++C6H5COOInitial(M)  0.017000Change(M)x +x+xEquilibrium(M)0.017xxx

The expression for Ka for ionization of C6H5COOH  is as follows:

  Ka=[H3O+][C6H5COO][C6H5COOH]        (5)

Substitute 0.017 M for [C6H5COOH], x for [H3O+], x for [C6H5COO] and 6.3×105 for Ka in equation (5), the equation needed to solve for the concentration of the hydrogen ion is as follows:

  6.3×105=(x)(x)0.017x

Rearrange above equation to obtain the required quadratic equation to compute the concentration of hydrogen ion as follows:

  x2+6.3×105x0.1071×105=0

Solve for x, therefore the concentration of hydrogen ion is as calculated follows:

  x=0.00100387

Or,

  x=0.00106687

Neglect, the negative value of x as concentration cannot be negative.

Therefore concentration of H3O+ is 0.00100387.

Substitute 0.00100387 for [H3O+] in equation (1), pH is calculated as follows:

  pH=log10[0.00100387]=2.99832

Hence, pH for 0.017 MC6H5COOH solution is 2.99832.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The hydronium ion concentration of vinegar is approximately 4 × 10−3 M. What are the corresponding values of pOH and pH?
The average acid concentration of the river is 1.632 M, what is its pH level? And what will happen to the quality of the water in the river?
The concentration of CH3COOH (pKa=4.75) in vinegar is about 1.0 M. With this what do you predict the pH of vinegar to be?

Chapter 15 Solutions

Chemistry: Principles and Practice

Ch. 15 - Prob. 15.11QECh. 15 - Prob. 15.12QECh. 15 - Why have chemists not tabulated the fraction...Ch. 15 - Prob. 15.15QECh. 15 - Prob. 15.16QECh. 15 - Prob. 15.17QECh. 15 - Prob. 15.18QECh. 15 - Define oxyacid and give examples from among the...Ch. 15 - Prob. 15.20QECh. 15 - Prob. 15.21QECh. 15 - Prob. 15.22QECh. 15 - Prob. 15.23QECh. 15 - Prob. 15.24QECh. 15 - Prob. 15.25QECh. 15 - Write the formula and name for the conjugate acid...Ch. 15 - For each of the following reactions, identify the...Ch. 15 - Prob. 15.28QECh. 15 - Prob. 15.29QECh. 15 - Prob. 15.30QECh. 15 - Prob. 15.31QECh. 15 - Write an equation to describe the proton transfer...Ch. 15 - Prob. 15.33QECh. 15 - Determine the hydrogen ion or hydroxide ion...Ch. 15 - Prob. 15.35QECh. 15 - The hydroxide ion concentrations in wines actually...Ch. 15 - Prob. 15.37QECh. 15 - Prob. 15.38QECh. 15 - Prob. 15.39QECh. 15 - Prob. 15.40QECh. 15 - Prob. 15.41QECh. 15 - Prob. 15.42QECh. 15 - Prob. 15.43QECh. 15 - Prob. 15.44QECh. 15 - Prob. 15.45QECh. 15 - Prob. 15.46QECh. 15 - A saturated solution of milk of magnesia, Mg(OH)2,...Ch. 15 - Find [OH] and the pH of the following solutions....Ch. 15 - Write the chemical equation for the ionization of...Ch. 15 - Prob. 15.50QECh. 15 - Prob. 15.51QECh. 15 - Prob. 15.52QECh. 15 - Prob. 15.53QECh. 15 - Assuming that the conductivity of an acid solution...Ch. 15 - Prob. 15.55QECh. 15 - Prob. 15.56QECh. 15 - Prob. 15.57QECh. 15 - Prob. 15.58QECh. 15 - Prob. 15.59QECh. 15 - A 0.10 M solution of chloroacetic acid, ClCH2COOH,...Ch. 15 - Prob. 15.61QECh. 15 - Prob. 15.62QECh. 15 - Prob. 15.63QECh. 15 - Prob. 15.64QECh. 15 - Prob. 15.65QECh. 15 - Prob. 15.66QECh. 15 - Prob. 15.67QECh. 15 - Prob. 15.68QECh. 15 - Write the chemical equation for the ionization of...Ch. 15 - Prob. 15.70QECh. 15 - Hydrazine, N2H4, is weak base with Kb = 1.3 106....Ch. 15 - Prob. 15.72QECh. 15 - Prob. 15.73QECh. 15 - Prob. 15.74QECh. 15 - Calculate the [OH] and the pH of a 0.024 M...Ch. 15 - Prob. 15.76QECh. 15 - Prob. 15.77QECh. 15 - Prob. 15.78QECh. 15 - Prob. 15.79QECh. 15 - Prob. 15.80QECh. 15 - Find the value of Kb for the conjugate base of the...Ch. 15 - Consider sodium acrylate, NaC3H3O2. Ka for acrylic...Ch. 15 - Prob. 15.83QECh. 15 - Prob. 15.84QECh. 15 - Prob. 15.85QECh. 15 - Prob. 15.86QECh. 15 - Prob. 15.87QECh. 15 - Prob. 15.88QECh. 15 - Prob. 15.89QECh. 15 - Prob. 15.90QECh. 15 - Prob. 15.91QECh. 15 - Prob. 15.92QECh. 15 - Prob. 15.93QECh. 15 - Prob. 15.94QECh. 15 - Explain how to calculate the pH of a solution that...Ch. 15 - Prob. 15.96QECh. 15 - Prob. 15.97QECh. 15 - Prob. 15.98QECh. 15 - Hypofluorous acid, HOF, is known, but fluorous...Ch. 15 - Prob. 15.100QECh. 15 - Prob. 15.101QECh. 15 - Prob. 15.102QECh. 15 - Which of each pair of acids is stronger? Why? (a)...Ch. 15 - Prob. 15.104QECh. 15 - Prob. 15.105QECh. 15 - Prob. 15.106QECh. 15 - Prob. 15.107QECh. 15 - Prob. 15.108QECh. 15 - Prob. 15.109QECh. 15 - Prob. 15.110QECh. 15 - Prob. 15.111QECh. 15 - Prob. 15.112QECh. 15 - Prob. 15.113QECh. 15 - Prob. 15.114QECh. 15 - Prob. 15.115QECh. 15 - Prob. 15.116QECh. 15 - Prob. 15.117QECh. 15 - Prob. 15.118QECh. 15 - Prob. 15.119QECh. 15 - Prob. 15.120QECh. 15 - A solution is made by diluting 25.0 mL of...Ch. 15 - A Liquid HF undergoes an autoionization reaction:...Ch. 15 - Pure liquid ammonia ionizes in a manner similar to...Ch. 15 - Prob. 15.124QECh. 15 - Prob. 15.125QECh. 15 - Prob. 15.126QECh. 15 - Prob. 15.127QECh. 15 - Prob. 15.128QECh. 15 - An aqueous solution contains formic acid and...Ch. 15 - A solution is made by dissolving 15.0 g sodium...Ch. 15 - Calculate the pH of a solution prepared by adding...Ch. 15 - Prob. 15.132QECh. 15 - Prob. 15.133QECh. 15 - When perchloric acid ionizes, it makes the...Ch. 15 - Prob. 15.135QE
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Text book image
Introductory Chemistry For Today
Chemistry
ISBN:9781285644561
Author:Seager
Publisher:Cengage
Text book image
Chemistry for Today: General, Organic, and Bioche...
Chemistry
ISBN:9781305960060
Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. Hansen
Publisher:Cengage Learning
Text book image
Living by Chemistry
Chemistry
ISBN:9781464142314
Author:Angelica M. Stacy
Publisher:W. H. Freeman
General Chemistry | Acids & Bases; Author: Ninja Nerd;https://www.youtube.com/watch?v=AOr_5tbgfQ0;License: Standard YouTube License, CC-BY