BuyFindarrow_forward

Calculus: Early Transcendentals

8th Edition
James Stewart
ISBN: 9781285741550

Solutions

Chapter
Section
BuyFindarrow_forward

Calculus: Early Transcendentals

8th Edition
James Stewart
ISBN: 9781285741550
Textbook Problem

(a) Show that when Laplace’s equation 2 u x 2 + 2 u y 2 + 2 u z 2 = 0 is written in cylindrical coordinates, it becomes 2 u r 2 + 1 r u r + 1 r 2 2 u θ 2 + 2 u z 2 = 0

(b) Show that when Laplace’s equation is written in spherical coordinates, it becomes 2 u ρ 2 + 2 ρ u ρ + cot ϕ ρ 2 u ϕ + 1 ρ 2 sin 2 ϕ 2 u θ 2 = 0

(a)

To determine

To show: The Laplace equation in cylindrical coordinates is 2ur2+(1r)ur+(1r2)2uθ2+2uz2=0.

Explanation

Given:

The Laplace equation is 2ux2+2uy2+2uz2=0.

Formula used:

The cylindrical coordinates (r,θ,z) corresponding to the rectangular coordinates (x,y,z) is,

r=x2+y2θ=tan1(yx)z=z (1)

The spherical coordinates (ρ,θ,ϕ) corresponding to the rectangular coordinates (x,y,z) is,

ρ=x2+y2+z2ϕ=cos1(zρ)θ=cos1(xρsinϕ) (2)

Chain Rule:

“Suppose that z=f(x,y,z) is a differentiable function of x, y and z where x=g(t),y=h(t),z=k(t) are both differentiable functions of t then, u is differentiable function of t and ut=uxxt+uyyt+uzzt”.

Calculation:

From the chain rule mentioned above, it is observed that ur=uxxr+uyyr+uzzr. From the equation (1), it is observed that x=rcosθ,y=rsinθ,z=z. So,

xr=cosθ,yr=sinθ,zr=0

Substitute this in the previous equation.

ur=uxxr+uyyr+uzzr=uxcosθ+uysinθ+uz(0)=uxcosθ+uysinθ

Differentiate this again.

r(ur)=r(uxcosθ+uysinθ)={cosθ[2ux2(xr)+2uyx(yr)+2uzx(zr)]+sinθ[2uy2(yr)+2uxy(xr)+2uzy(zr)]}={cosθ[2ux2(cosθ)+2uyx(sinθ)+2uzx(0)]+sinθ[2uy2(sinθ)+2uxy(cosθ)+2uzy(0)]}=2ux2cos2θ+2uy2sin2θ+22uyxsinθcosθ

Thus, 2ur2=2ux2cos2θ+2uy2sin2θ+22uyxsinθcosθ.

Again from the chain rule mentioned above, it is observed that uθ=uxxθ+uyyθ+uzzθ. From the equation (1), it is observed that x=rcosθ,y=rsinθ,z=z. So,

xθ=rsinθ,yθ=rcosθ,zθ=0

Substitute this in the previous equation.

uθ=uxxθ+uyyθ+uzzθ=ux(rsinθ)+uy(rsinθ)+uz(0)=uxrsinθ+uyrsinθ

Differentiate this again

(b)

To determine

To show: The Laplace equation in spherical coordinates is 2uρ2+(2ρ)uρ+(cotϕρ2)uϕ+(1ρ2)2uϕ2+(1ρ2sin2ϕ)2uθ2=0.

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

Chapter 15 Solutions

Show all chapter solutions add
Sect-15.1 P-11ESect-15.1 P-12ESect-15.1 P-13ESect-15.1 P-14ESect-15.1 P-15ESect-15.1 P-16ESect-15.1 P-17ESect-15.1 P-18ESect-15.1 P-19ESect-15.1 P-20ESect-15.1 P-21ESect-15.1 P-22ESect-15.1 P-23ESect-15.1 P-24ESect-15.1 P-25ESect-15.1 P-26ESect-15.1 P-27ESect-15.1 P-28ESect-15.1 P-29ESect-15.1 P-30ESect-15.1 P-31ESect-15.1 P-32ESect-15.1 P-33ESect-15.1 P-34ESect-15.1 P-35ESect-15.1 P-36ESect-15.1 P-37ESect-15.1 P-38ESect-15.1 P-39ESect-15.1 P-40ESect-15.1 P-41ESect-15.1 P-42ESect-15.1 P-43ESect-15.1 P-44ESect-15.1 P-47ESect-15.1 P-48ESect-15.1 P-49ESect-15.1 P-50ESect-15.1 P-52ESect-15.2 P-1ESect-15.2 P-2ESect-15.2 P-3ESect-15.2 P-4ESect-15.2 P-5ESect-15.2 P-6ESect-15.2 P-7ESect-15.2 P-8ESect-15.2 P-9ESect-15.2 P-10ESect-15.2 P-11ESect-15.2 P-12ESect-15.2 P-13ESect-15.2 P-14ESect-15.2 P-15ESect-15.2 P-16ESect-15.2 P-17ESect-15.2 P-18ESect-15.2 P-19ESect-15.2 P-20ESect-15.2 P-21ESect-15.2 P-22ESect-15.2 P-23ESect-15.2 P-24ESect-15.2 P-25ESect-15.2 P-26ESect-15.2 P-27ESect-15.2 P-28ESect-15.2 P-29ESect-15.2 P-30ESect-15.2 P-31ESect-15.2 P-32ESect-15.2 P-33ESect-15.2 P-34ESect-15.2 P-35ESect-15.2 P-36ESect-15.2 P-37ESect-15.2 P-38ESect-15.2 P-39ESect-15.2 P-40ESect-15.2 P-45ESect-15.2 P-46ESect-15.2 P-47ESect-15.2 P-48ESect-15.2 P-49ESect-15.2 P-50ESect-15.2 P-51ESect-15.2 P-52ESect-15.2 P-53ESect-15.2 P-54ESect-15.2 P-55ESect-15.2 P-56ESect-15.2 P-57ESect-15.2 P-58ESect-15.2 P-59ESect-15.2 P-60ESect-15.2 P-61ESect-15.2 P-62ESect-15.2 P-63ESect-15.2 P-64ESect-15.2 P-65ESect-15.2 P-66ESect-15.2 P-67ESect-15.2 P-68ESect-15.2 P-69ESect-15.3 P-1ESect-15.3 P-2ESect-15.3 P-3ESect-15.3 P-4ESect-15.3 P-5ESect-15.3 P-6ESect-15.3 P-7ESect-15.3 P-8ESect-15.3 P-9ESect-15.3 P-10ESect-15.3 P-11ESect-15.3 P-12ESect-15.3 P-13ESect-15.3 P-14ESect-15.3 P-15ESect-15.3 P-16ESect-15.3 P-17ESect-15.3 P-18ESect-15.3 P-19ESect-15.3 P-20ESect-15.3 P-21ESect-15.3 P-22ESect-15.3 P-23ESect-15.3 P-24ESect-15.3 P-25ESect-15.3 P-26ESect-15.3 P-27ESect-15.3 P-28ESect-15.3 P-29ESect-15.3 P-30ESect-15.3 P-31ESect-15.3 P-32ESect-15.3 P-33ESect-15.3 P-34ESect-15.3 P-35ESect-15.3 P-36ESect-15.3 P-37ESect-15.3 P-38ESect-15.3 P-39ESect-15.3 P-40ESect-15.3 P-41ESect-15.4 P-1ESect-15.4 P-2ESect-15.4 P-3ESect-15.4 P-4ESect-15.4 P-5ESect-15.4 P-6ESect-15.4 P-7ESect-15.4 P-8ESect-15.4 P-9ESect-15.4 P-10ESect-15.4 P-11ESect-15.4 P-12ESect-15.4 P-13ESect-15.4 P-14ESect-15.4 P-15ESect-15.4 P-16ESect-15.4 P-17ESect-15.4 P-18ESect-15.4 P-19ESect-15.4 P-20ESect-15.4 P-21ESect-15.4 P-22ESect-15.4 P-23ESect-15.4 P-24ESect-15.4 P-27ESect-15.4 P-28ESect-15.4 P-29ESect-15.4 P-30ESect-15.4 P-32ESect-15.4 P-33ESect-15.5 P-1ESect-15.5 P-2ESect-15.5 P-3ESect-15.5 P-4ESect-15.5 P-5ESect-15.5 P-6ESect-15.5 P-7ESect-15.5 P-8ESect-15.5 P-9ESect-15.5 P-10ESect-15.5 P-11ESect-15.5 P-12ESect-15.5 P-13ESect-15.5 P-14ESect-15.5 P-21ESect-15.5 P-22ESect-15.5 P-23ESect-15.5 P-24ESect-15.6 P-1ESect-15.6 P-2ESect-15.6 P-3ESect-15.6 P-4ESect-15.6 P-5ESect-15.6 P-6ESect-15.6 P-7ESect-15.6 P-8ESect-15.6 P-9ESect-15.6 P-10ESect-15.6 P-11ESect-15.6 P-12ESect-15.6 P-13ESect-15.6 P-14ESect-15.6 P-15ESect-15.6 P-16ESect-15.6 P-17ESect-15.6 P-18ESect-15.6 P-19ESect-15.6 P-20ESect-15.6 P-21ESect-15.6 P-22ESect-15.6 P-25ESect-15.6 P-26ESect-15.6 P-27ESect-15.6 P-28ESect-15.6 P-29ESect-15.6 P-30ESect-15.6 P-31ESect-15.6 P-32ESect-15.6 P-33ESect-15.6 P-34ESect-15.6 P-35ESect-15.6 P-36ESect-15.6 P-37ESect-15.6 P-38ESect-15.6 P-39ESect-15.6 P-40ESect-15.6 P-41ESect-15.6 P-42ESect-15.6 P-43ESect-15.6 P-44ESect-15.6 P-45ESect-15.6 P-46ESect-15.6 P-47ESect-15.6 P-48ESect-15.6 P-51ESect-15.6 P-52ESect-15.6 P-53ESect-15.6 P-54ESect-15.7 P-1ESect-15.7 P-2ESect-15.7 P-3ESect-15.7 P-4ESect-15.7 P-5ESect-15.7 P-6ESect-15.7 P-7ESect-15.7 P-8ESect-15.7 P-9ESect-15.7 P-10ESect-15.7 P-11ESect-15.7 P-12ESect-15.7 P-13ESect-15.7 P-14ESect-15.7 P-15ESect-15.7 P-16ESect-15.7 P-17ESect-15.7 P-18ESect-15.7 P-19ESect-15.7 P-20ESect-15.7 P-21ESect-15.7 P-22ESect-15.7 P-23ESect-15.7 P-24ESect-15.7 P-25ESect-15.7 P-26ESect-15.7 P-27ESect-15.7 P-28ESect-15.7 P-29ESect-15.7 P-30ESect-15.7 P-31ESect-15.8 P-1ESect-15.8 P-2ESect-15.8 P-3ESect-15.8 P-4ESect-15.8 P-5ESect-15.8 P-6ESect-15.8 P-7ESect-15.8 P-8ESect-15.8 P-9ESect-15.8 P-10ESect-15.8 P-11ESect-15.8 P-12ESect-15.8 P-13ESect-15.8 P-14ESect-15.8 P-15ESect-15.8 P-16ESect-15.8 P-17ESect-15.8 P-18ESect-15.8 P-19ESect-15.8 P-20ESect-15.8 P-21ESect-15.8 P-22ESect-15.8 P-23ESect-15.8 P-24ESect-15.8 P-25ESect-15.8 P-26ESect-15.8 P-27ESect-15.8 P-28ESect-15.8 P-29ESect-15.8 P-30ESect-15.8 P-31ESect-15.8 P-32ESect-15.8 P-33ESect-15.8 P-34ESect-15.8 P-35ESect-15.8 P-36ESect-15.8 P-37ESect-15.8 P-38ESect-15.8 P-41ESect-15.8 P-42ESect-15.8 P-43ESect-15.8 P-44ESect-15.8 P-45ESect-15.8 P-46ESect-15.8 P-48ESect-15.8 P-49ESect-15.9 P-1ESect-15.9 P-2ESect-15.9 P-3ESect-15.9 P-4ESect-15.9 P-5ESect-15.9 P-6ESect-15.9 P-7ESect-15.9 P-8ESect-15.9 P-9ESect-15.9 P-10ESect-15.9 P-11ESect-15.9 P-12ESect-15.9 P-13ESect-15.9 P-14ESect-15.9 P-15ESect-15.9 P-16ESect-15.9 P-17ESect-15.9 P-18ESect-15.9 P-19ESect-15.9 P-20ESect-15.9 P-21ESect-15.9 P-22ESect-15.9 P-23ESect-15.9 P-24ESect-15.9 P-25ESect-15.9 P-26ESect-15.9 P-27ESect-15.9 P-28ECh-15 P-1RCCCh-15 P-2RCCCh-15 P-3RCCCh-15 P-4RCCCh-15 P-5RCCCh-15 P-6RCCCh-15 P-7RCCCh-15 P-8RCCCh-15 P-9RCCCh-15 P-10RCCCh-15 P-1RQCh-15 P-2RQCh-15 P-3RQCh-15 P-4RQCh-15 P-5RQCh-15 P-6RQCh-15 P-7RQCh-15 P-8RQCh-15 P-9RQCh-15 P-1RECh-15 P-2RECh-15 P-3RECh-15 P-4RECh-15 P-5RECh-15 P-6RECh-15 P-7RECh-15 P-8RECh-15 P-9RECh-15 P-10RECh-15 P-11RECh-15 P-12RECh-15 P-13RECh-15 P-14RECh-15 P-15RECh-15 P-16RECh-15 P-17RECh-15 P-18RECh-15 P-19RECh-15 P-20RECh-15 P-21RECh-15 P-22RECh-15 P-23RECh-15 P-24RECh-15 P-25RECh-15 P-26RECh-15 P-27RECh-15 P-28RECh-15 P-29RECh-15 P-30RECh-15 P-31RECh-15 P-32RECh-15 P-33RECh-15 P-34RECh-15 P-35RECh-15 P-36RECh-15 P-37RECh-15 P-38RECh-15 P-39RECh-15 P-40RECh-15 P-41RECh-15 P-42RECh-15 P-43RECh-15 P-44RECh-15 P-45RECh-15 P-47RECh-15 P-48RECh-15 P-49RECh-15 P-51RECh-15 P-52RECh-15 P-53RECh-15 P-54RECh-15 P-55RECh-15 P-56RECh-15 P-57RECh-15 P-58RECh-15 P-59RECh-15 P-60RECh-15 P-1PCh-15 P-2PCh-15 P-3PCh-15 P-4PCh-15 P-5PCh-15 P-6PCh-15 P-7PCh-15 P-8PCh-15 P-9PCh-15 P-10PCh-15 P-11PCh-15 P-12PCh-15 P-13P

Additional Math Solutions

Find more solutions based on key concepts

Show solutions add

In Exercises 1-6, simplify the expression. (x2)2+5x10

Calculus: An Applied Approach (MindTap Course List)

Draw a histogram for the distribution of scores shown in the following table. x f 10 2 9 4 8 1 7 1 6 4 5 2

Essentials of Statistics for The Behavioral Sciences (MindTap Course List)

In Exercises 23-36, find the domain of the function. 27. f(x)=x2+1

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

Find each product. 7a(2a+3b4ab)

Elementary Technical Mathematics

f(x)={2x+1ifx11xif1xsinxifx is continuous: a) for all x b) for all x except x = 1 c) for all x except x = d) f...

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th

For , f′(x) =

Study Guide for Stewart's Multivariable Calculus, 8th