EBK NUMERICAL METHODS FOR ENGINEERS
EBK NUMERICAL METHODS FOR ENGINEERS
7th Edition
ISBN: 9780100254145
Author: Chapra
Publisher: YUZU
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 28, Problem 48P

The temperature distribution in a tapered conical cooling fin (Fig. P28.48) is described by the following differential equation, which has been nondimensionalized

d 2 u d x 2 + ( 2 x ) ( d u d x p u ) = 0

where u = temperature ( 0 u 1 ) , x = axial distance ( 0 x 1 ) , and p is a nondimensional parameter that describes the heat transfer and geometry

p = h L k 1 + 4 2 m 2

where h = a heat transfer coefficient, k = thermal conductivity, L = the length or height of the cone, and m = the slope of the cone wall. The equation has the boundary conditions

u ( x = 0 ) = 0 u ( x = 1 ) = 1

Solve this equation for the temperature distribution using finite difference methods. Use second-order accurate finite difference analogues for the derivatives. Write a computer program to obtain the solution and plot temperature versus axial distance for various values of p = 10 ,   20 ,   50 ,  and  100 .

Chapter 28, Problem 48P, 28.48	The temperature distribution in a tapered conical cooling fin (Fig. P28.48) is described by

FIGURE P28.48

Blurred answer
Students have asked these similar questions
Q2/A/ Use the Crank-Nicolson method to solve for the temperature distribution of a long thin rod C with a length of 10 cm and the following values: k = 0.49 cal/(s cm °C), Ax = 2 cm, and At = st 0.1 s. Initially the temperature of the rod is 0°C and the boundary conditions are fixed for all times C=0.2174 cal/g °C) at 7(0, t) = 100°C and T(10, t) = 50°C. Note that the rod is aluminum with and = 2.7 g/cm³. List the tridiagonal system of equations and determined the temperature up P to 0.1 s.
Saturated steam at 99.6 °C is heated to 350°C. Use the steam table provided to determine: a. The required heat input if 1 kg of steam undergoes the process in a variable-volume constant-pressure container. b. The work of expansion (in kJ) of the steam undergoing the process. C. The required heat input if a continuous stream flowing at 1 kg/s undergoes the process at constant pressure. d. Does your numeric answer to part c equal the sum of parts b and a? Explain why or why not. Given: 1 bar = 10 N/m4, Q= AH, Q = AU, AA = AÛ + PAV, table B.7 in kJ/kg and m/kg.
I.C 02/A/ Use the Crank-Nicolson method to solve for the temperature distribution of a long thin rod with a length of 10 cm and the following values: k = 0.49 cal/(s cm °C), Ax = 2 cm, and At = st 0.1 s. Initially the temperature of the rod is 0°C and the boundary conditions are fixed for all times at 7(0, t) = 100°C and 7(10, t) = 50°C. Note that the rod is aluminum with C = 0.2174 cal/g °C) and p = 2.7 g/cm³. List the tridiagonal system of equations and determined the temperature up to 0.1 s.

Chapter 28 Solutions

EBK NUMERICAL METHODS FOR ENGINEERS

Ch. 28 - An on is other malbatchre actor can be described...Ch. 28 - The following system is a classic example of stiff...Ch. 28 - 28.13 A biofilm with a thickness grows on the...Ch. 28 - 28.14 The following differential equation...Ch. 28 - Prob. 15PCh. 28 - 28.16 Bacteria growing in a batch reactor utilize...Ch. 28 - 28.17 Perform the same computation for the...Ch. 28 - Perform the same computation for the Lorenz...Ch. 28 - The following equation can be used to model the...Ch. 28 - Perform the same computation as in Prob. 28.19,...Ch. 28 - 28.21 An environmental engineer is interested in...Ch. 28 - 28.22 Population-growth dynamics are important in...Ch. 28 - 28.23 Although the model in Prob. 28.22 works...Ch. 28 - 28.25 A cable is hanging from two supports at A...Ch. 28 - 28.26 The basic differential equation of the...Ch. 28 - 28.27 The basic differential equation of the...Ch. 28 - A pond drains through a pipe, as shown in Fig....Ch. 28 - 28.29 Engineers and scientists use mass-spring...Ch. 28 - Under a number of simplifying assumptions, the...Ch. 28 - 28.31 In Prob. 28.30, a linearized groundwater...Ch. 28 - The Lotka-Volterra equations described in Sec....Ch. 28 - The growth of floating, unicellular algae below a...Ch. 28 - 28.34 The following ODEs have been proposed as a...Ch. 28 - 28.35 Perform the same computation as in the first...Ch. 28 - Solve the ODE in the first part of Sec. 8.3 from...Ch. 28 - 28.37 For a simple RL circuit, Kirchhoff’s voltage...Ch. 28 - In contrast to Prob. 28.37, real resistors may not...Ch. 28 - 28.39 Develop an eigenvalue problem for an LC...Ch. 28 - 28.40 Just as Fourier’s law and the heat balance...Ch. 28 - 28.41 Perform the same computation as in Sec....Ch. 28 - 28.42 The rate of cooling of a body can be...Ch. 28 - The rate of heat flow (conduction) between two...Ch. 28 - Repeat the falling parachutist problem (Example...Ch. 28 - 28.45 Suppose that, after falling for 13 s, the...Ch. 28 - 28.46 The following ordinary differential equation...Ch. 28 - 28.47 A forced damped spring-mass system (Fig....Ch. 28 - 28.48 The temperature distribution in a tapered...Ch. 28 - 28.49 The dynamics of a forced spring-mass-damper...Ch. 28 - The differential equation for the velocity of a...Ch. 28 - 28.51 Two masses are attached to a wall by linear...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY
Solution of Differential Equations and Initial Value Problems; Author: Jefril Amboy;https://www.youtube.com/watch?v=Q68sk7XS-dc;License: Standard YouTube License, CC-BY