EBK NUMERICAL METHODS FOR ENGINEERS
EBK NUMERICAL METHODS FOR ENGINEERS
7th Edition
ISBN: 9780100254145
Author: Chapra
Publisher: YUZU
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 28, Problem 6P

A spherical ice cube (an “ice sphere”) that is 6 cm in diameteris removed from a 0 ° C freezer and placed on a mesh screenat room temperature T a = 20 ° C . What will be the diameter of theice cube as a function of time out of the freezer (assuming thatall the water that has melted immediately drips through thescreen)? The heat transfer coefficient h for a sphere in a stillroom is about 3 W/ ( m 2 K ) . The heat flux from the ice sphere to the air is given by

Flux = q A = h ( T a T )

where q = heat and A = surface area of the sphere. Use anumerical method to make your calculation. Note that the latentheat of fusion is 333 kJ/kg and the density of ice is approximately0.917 kg/m3.

Blurred answer
Students have asked these similar questions
Consider a copper plate that has dimensions of 3 cm x 3 cm x 7 cm (length, width, and thickness, respectively). As shown in the following figure, the copper plate is exposed to a thermal energy source that puts out 126 J every second. The density of copper is 8,900 kg/m³. Assume there is no heat loss to the surrounding block. 126 J Copper Insulation Ⓡ What is the specific heat of copper (in J/(kg K))? J/(kg. K) What is the mass of the copper plate (in kg)? kg How much energy (in J) will be consumed during 11 seconds? J Determine the temperature rise (in K) in the plate after 11 seconds.
A wall made of wood is 4.00 cm thick and has an area of 48.0 m². If the temperature inside is 25 °C and the temperature on the outside is 14 C, then at what rate is thermal energy transported through the wall by conduction? The thermal conductivity of wood is 0.080 Js ¹m¹(c)¹ 'n Muur is gemaak van hout wat 4.00 cm dik is en met 'n oppervlakte van 48.0 m². Wat is die tempo van energie oordrag as gevolg van geleiding deur die muur indien die binne temperatuur is 25 °C en die buite temperatuur 14 °C is? Die termiese geleidingskonstante van hout is 0.080 Jsm¹(C)1. Select one: a 82 W O b. 1056 W 690 W 1100 W O e. 2200 W O.C. O d. A
What is the heat loss through the windows of a passenger train left outside a station in winter, assuming that the temperature inside the train is 20°C, outside the train, -20°C, total heat transfer area 40 m2. The thickness of glass wall may be taken as 0.5 cm. The thermal conductivity of glass is 0.88 W/(m.K).

Chapter 28 Solutions

EBK NUMERICAL METHODS FOR ENGINEERS

Ch. 28 - An on is other malbatchre actor can be described...Ch. 28 - The following system is a classic example of stiff...Ch. 28 - 28.13 A biofilm with a thickness grows on the...Ch. 28 - 28.14 The following differential equation...Ch. 28 - Prob. 15PCh. 28 - 28.16 Bacteria growing in a batch reactor utilize...Ch. 28 - 28.17 Perform the same computation for the...Ch. 28 - Perform the same computation for the Lorenz...Ch. 28 - The following equation can be used to model the...Ch. 28 - Perform the same computation as in Prob. 28.19,...Ch. 28 - 28.21 An environmental engineer is interested in...Ch. 28 - 28.22 Population-growth dynamics are important in...Ch. 28 - 28.23 Although the model in Prob. 28.22 works...Ch. 28 - 28.25 A cable is hanging from two supports at A...Ch. 28 - 28.26 The basic differential equation of the...Ch. 28 - 28.27 The basic differential equation of the...Ch. 28 - A pond drains through a pipe, as shown in Fig....Ch. 28 - 28.29 Engineers and scientists use mass-spring...Ch. 28 - Under a number of simplifying assumptions, the...Ch. 28 - 28.31 In Prob. 28.30, a linearized groundwater...Ch. 28 - The Lotka-Volterra equations described in Sec....Ch. 28 - The growth of floating, unicellular algae below a...Ch. 28 - 28.34 The following ODEs have been proposed as a...Ch. 28 - 28.35 Perform the same computation as in the first...Ch. 28 - Solve the ODE in the first part of Sec. 8.3 from...Ch. 28 - 28.37 For a simple RL circuit, Kirchhoff’s voltage...Ch. 28 - In contrast to Prob. 28.37, real resistors may not...Ch. 28 - 28.39 Develop an eigenvalue problem for an LC...Ch. 28 - 28.40 Just as Fourier’s law and the heat balance...Ch. 28 - 28.41 Perform the same computation as in Sec....Ch. 28 - 28.42 The rate of cooling of a body can be...Ch. 28 - The rate of heat flow (conduction) between two...Ch. 28 - Repeat the falling parachutist problem (Example...Ch. 28 - 28.45 Suppose that, after falling for 13 s, the...Ch. 28 - 28.46 The following ordinary differential equation...Ch. 28 - 28.47 A forced damped spring-mass system (Fig....Ch. 28 - 28.48 The temperature distribution in a tapered...Ch. 28 - 28.49 The dynamics of a forced spring-mass-damper...Ch. 28 - The differential equation for the velocity of a...Ch. 28 - 28.51 Two masses are attached to a wall by linear...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY
Solution of Differential Equations and Initial Value Problems; Author: Jefril Amboy;https://www.youtube.com/watch?v=Q68sk7XS-dc;License: Standard YouTube License, CC-BY