EBK NUMERICAL METHODS FOR ENGINEERS
EBK NUMERICAL METHODS FOR ENGINEERS
7th Edition
ISBN: 9780100254145
Author: Chapra
Publisher: YUZU
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 28, Problem 33P

The growth of floating, unicellular algae below a sewage treatment plant discharge can be modeled with the following simultaneous ODEs:

d a d t = [ K g ( n , p ) k d k s ] a d n d t = r n c k h c r n a k g ( n , p ) a d p d t r p c k h c r p a k g ( n , p ) a d c d t = r c a k a a k h c

where t = traveltime  ( d ) , a = algal chlorophyll concentration ( μ g A/L ) , n = inorganic nitrogen concentration ( μ g N/L ) , p = inorganic phosphorus concentration ( μ g P / L ) , c = detritus concentration ( μ g C / L ) , k d = algal death rate ( l d ) , k s =algal  settling rate ( l d ) , k h = det rital hydrolysis rate ( l d ) , r n c = nitrogen to-carbon ratio ( μ g N/ μ gC ) , r p c = phosphorus-to-carbon ratio ( μ g P/ μ gC ) , r n a = nitrogen-to chlorophyll ratio ( μ g N/ μ gA ) , r p a = Phophorus-to chlorophyll ratio ( μ g p/ μ gA ) , a n d k g ( n , p ) = algal growth rate ( l d ) , which can be computed with

k g ( n , p ) = k g min { p k s p + p , n k s n + n }

where k g = the  the algal growth rate at excess nutrient levels ( l d ) , k s p = the phosphorus half-saturation constant ( μ g P/L ) , and k s n = the nitrogen half-saturation constant ( μ g N/L ) . Use the ode45 and ode15s functions to solve these equations from t = 0 to 50 d given the initial conditions a = 1 , n = 4000 , p = 800 , and c = 0 Note that the parameters are k d = 0.1 , k s = 0.15 , k h = 0.025 , r n c = 0.18 , r p c = 0.025 , r n a = 7.2 , r p a = 1 , r c a = 40 , k g = 0.5 , k s p = 2 , and  k s n = 15 . Develop plots of both solutions and interpret the results.

Blurred answer
Students have asked these similar questions
1. The general form of linear second-order differential equation can be written in the form: و بار / كلية الهندسة Q4)/ grap dy q(x)y = r(x) d'y +p(x) dx dy b. dx - F(x)y = F(x) x2 dy dx - xy = C. d. r2 d?y dx2 -f(x)y = F(x) 2431)(5-1) 3 (3-21)2 a. (221 -91i) / 169 b. (21 + 52i)/ 13 c. (-90+220i)/169 d. (-7+17i)/ 13 2. Simplify: الحدار المك المراغة 3. If the roots of second order differential equation is complex conjugate, then the gene contain: a. sinusoidal functions and exponentials b. constant and two exponentials c. two constants and two exponentials d. two constants and one exponential 5 4. The order and degree of the differential: 3(3 - + 4y = sinx* are: d²y a. First-order, First-degree- b. First-order, second-degree Second -order, First -degree d. Second -order, second-degree dx2 lo - 2i tisi. 8- 12i 5. The particular solution of (D² + 4)y = cos 2x is equal to: a. sin 2x b. cos 2x 13+159 C. 4 cos 2x d. 4 sin 2x 5-12 lo Best wishes الامتحانية د. مازن ياسین عبود رئيس القسم بن فاضل…
The amount of heat conducted through a wall of length r is given by Fourier's Law:. CONDUCTION RATE EQUATION T FOURIER'S LAW q, = -k A dT dx T, >T, where q, is the heat flux, k is a proportionality factor, Ais the wall's cross-sectional area, and 4 is the temperature gradient throughout the wall. Our friend Matt Labb wants to find T2 (temperature of the wall's rightmost edge) given q,, k, and A. Is this possible? If so, briefly explain how to find Tp. If not, briefly explain why.
The stress profile shown below is applied to six different biological materials: Log Time (s] The mechanical behavior of each of the materials can be modeled as a Voigt body. In response to o,= 20 Pa applied to each of the six materials, the following responses are obtained: 2 of Maferial 6 Material 5 0.12 0.10 Material 4 0.08 Material 3 0.06 0.04 Material 2 0.02 Material 1 (a) Which of the materials has the highest Young's Modulus (E)? Why? Log Time (s) (b) Using strain value of 0.06, estimate the coefficient of viscosity (n) for Material 6. Stress (kPa) Strain

Chapter 28 Solutions

EBK NUMERICAL METHODS FOR ENGINEERS

Ch. 28 - An on is other malbatchre actor can be described...Ch. 28 - The following system is a classic example of stiff...Ch. 28 - 28.13 A biofilm with a thickness grows on the...Ch. 28 - 28.14 The following differential equation...Ch. 28 - Prob. 15PCh. 28 - 28.16 Bacteria growing in a batch reactor utilize...Ch. 28 - 28.17 Perform the same computation for the...Ch. 28 - Perform the same computation for the Lorenz...Ch. 28 - The following equation can be used to model the...Ch. 28 - Perform the same computation as in Prob. 28.19,...Ch. 28 - 28.21 An environmental engineer is interested in...Ch. 28 - 28.22 Population-growth dynamics are important in...Ch. 28 - 28.23 Although the model in Prob. 28.22 works...Ch. 28 - 28.25 A cable is hanging from two supports at A...Ch. 28 - 28.26 The basic differential equation of the...Ch. 28 - 28.27 The basic differential equation of the...Ch. 28 - A pond drains through a pipe, as shown in Fig....Ch. 28 - 28.29 Engineers and scientists use mass-spring...Ch. 28 - Under a number of simplifying assumptions, the...Ch. 28 - 28.31 In Prob. 28.30, a linearized groundwater...Ch. 28 - The Lotka-Volterra equations described in Sec....Ch. 28 - The growth of floating, unicellular algae below a...Ch. 28 - 28.34 The following ODEs have been proposed as a...Ch. 28 - 28.35 Perform the same computation as in the first...Ch. 28 - Solve the ODE in the first part of Sec. 8.3 from...Ch. 28 - 28.37 For a simple RL circuit, Kirchhoff’s voltage...Ch. 28 - In contrast to Prob. 28.37, real resistors may not...Ch. 28 - 28.39 Develop an eigenvalue problem for an LC...Ch. 28 - 28.40 Just as Fourier’s law and the heat balance...Ch. 28 - 28.41 Perform the same computation as in Sec....Ch. 28 - 28.42 The rate of cooling of a body can be...Ch. 28 - The rate of heat flow (conduction) between two...Ch. 28 - Repeat the falling parachutist problem (Example...Ch. 28 - 28.45 Suppose that, after falling for 13 s, the...Ch. 28 - 28.46 The following ordinary differential equation...Ch. 28 - 28.47 A forced damped spring-mass system (Fig....Ch. 28 - 28.48 The temperature distribution in a tapered...Ch. 28 - 28.49 The dynamics of a forced spring-mass-damper...Ch. 28 - The differential equation for the velocity of a...Ch. 28 - 28.51 Two masses are attached to a wall by linear...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY
Solution of Differential Equations and Initial Value Problems; Author: Jefril Amboy;https://www.youtube.com/watch?v=Q68sk7XS-dc;License: Standard YouTube License, CC-BY