EBK NUMERICAL METHODS FOR ENGINEERS
EBK NUMERICAL METHODS FOR ENGINEERS
7th Edition
ISBN: 9780100254145
Author: Chapra
Publisher: YUZU
bartleby

Videos

Textbook Question
Book Icon
Chapter 28, Problem 44P

Repeat the falling parachutist problem (Example 1.2), but with the upward force due to drag as a second-order rate:

F u = c v 2

where c = 0.225  kg/m . Solve for t = 0 to 30, plot your results, and compare with those of Examples 1.2.

Blurred answer
Students have asked these similar questions
An object is shot upward from the ground with an initial velocity of 640 ft/sec, and experiencés a constant deceleration of 32 ft/sec² due to gravity as well as a deceleration of (v(t) / 10) ft/sec due to air resistance, where v(t) is the object's velocity in ft/sec. (a) Set up and solve an initial-value problem to determine the object's velocity v(t) at time t. (b) At what time does the object reach its highest point?
1. F3 The lateral-direction equations of motion of an aircraft in steady, straight and level flight are v=-0.243v-136.25r+9.80-0.7595 +4.825 p+0.0557r=-0.195v-1.695p+0.913r+16.535 +6.995 0.0152p+ 0.106v+0.039p-0.624r +0.3195-6.43% O=P (a) 4 € Consider the state-space representation of the equations of motion given by. Xlat Alat Alat + Blatulat ' and where and with F4 % Ylat 5 = Clat Xlat + Dlat lat Xlat = (V, p, r, $)T Ylat = (Y1, Y2, 3), Y₁ =B=V/VR, Determine the matrices Alat Blat, Clat, and Dlat- 10 F5 ^ Y2 = r, 6 1) F6 H y3 = (ay) eg 7 PrtScn F7 = V +136.25r. W * 8 Home F8 ( 9 End F9 ) PgUp 0
Based on your equations for the above problem, solve for the extension of the spring (in meters) when the variables have values as follows: angle A is 74.79 degrees angle B is 44.36 degrees spring constant k is 123.77 N/m mass m2 is 2.52 kg

Chapter 28 Solutions

EBK NUMERICAL METHODS FOR ENGINEERS

Ch. 28 - An on is other malbatchre actor can be described...Ch. 28 - The following system is a classic example of stiff...Ch. 28 - 28.13 A biofilm with a thickness grows on the...Ch. 28 - 28.14 The following differential equation...Ch. 28 - Prob. 15PCh. 28 - 28.16 Bacteria growing in a batch reactor utilize...Ch. 28 - 28.17 Perform the same computation for the...Ch. 28 - Perform the same computation for the Lorenz...Ch. 28 - The following equation can be used to model the...Ch. 28 - Perform the same computation as in Prob. 28.19,...Ch. 28 - 28.21 An environmental engineer is interested in...Ch. 28 - 28.22 Population-growth dynamics are important in...Ch. 28 - 28.23 Although the model in Prob. 28.22 works...Ch. 28 - 28.25 A cable is hanging from two supports at A...Ch. 28 - 28.26 The basic differential equation of the...Ch. 28 - 28.27 The basic differential equation of the...Ch. 28 - A pond drains through a pipe, as shown in Fig....Ch. 28 - 28.29 Engineers and scientists use mass-spring...Ch. 28 - Under a number of simplifying assumptions, the...Ch. 28 - 28.31 In Prob. 28.30, a linearized groundwater...Ch. 28 - The Lotka-Volterra equations described in Sec....Ch. 28 - The growth of floating, unicellular algae below a...Ch. 28 - 28.34 The following ODEs have been proposed as a...Ch. 28 - 28.35 Perform the same computation as in the first...Ch. 28 - Solve the ODE in the first part of Sec. 8.3 from...Ch. 28 - 28.37 For a simple RL circuit, Kirchhoff’s voltage...Ch. 28 - In contrast to Prob. 28.37, real resistors may not...Ch. 28 - 28.39 Develop an eigenvalue problem for an LC...Ch. 28 - 28.40 Just as Fourier’s law and the heat balance...Ch. 28 - 28.41 Perform the same computation as in Sec....Ch. 28 - 28.42 The rate of cooling of a body can be...Ch. 28 - The rate of heat flow (conduction) between two...Ch. 28 - Repeat the falling parachutist problem (Example...Ch. 28 - 28.45 Suppose that, after falling for 13 s, the...Ch. 28 - 28.46 The following ordinary differential equation...Ch. 28 - 28.47 A forced damped spring-mass system (Fig....Ch. 28 - 28.48 The temperature distribution in a tapered...Ch. 28 - 28.49 The dynamics of a forced spring-mass-damper...Ch. 28 - The differential equation for the velocity of a...Ch. 28 - 28.51 Two masses are attached to a wall by linear...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Chain Rule dy:dx = dy:du*du:dx; Author: Robert Cappetta;https://www.youtube.com/watch?v=IUYniALwbHs;License: Standard YouTube License, CC-BY
CHAIN RULE Part 1; Author: Btech Maths Hub;https://www.youtube.com/watch?v=TIAw6AJ_5Po;License: Standard YouTube License, CC-BY