EBK NUMERICAL METHODS FOR ENGINEERS
EBK NUMERICAL METHODS FOR ENGINEERS
7th Edition
ISBN: 9780100254145
Author: Chapra
Publisher: YUZU
bartleby

Videos

Textbook Question
Book Icon
Chapter 28, Problem 40P

Just as Fourier's law and the heat balance can be employed to characterize temperature distribution, analogous relationships are available to model field problems in other areas of engineering. For example, electrical engineers use a similar approach when modeling electrostatic fields. Under a number of simplifying assumptions, an analog of Fourier's law can be represented in one-dimensional form as

D = ε d V d x

whereD is called the electric flux density vector, ε = permittivity of the material, and V = electroststic potential. Similarly, a Poisson equation for electrostatic fields can be represented in one dimension as

d 2 V d x 2 = ρ v ε

where ρ v = charge density. Use the finite-difference technique with Δ x = 2 to determine V for a wire where V ( 0 ) = 1000 , V ( 20 ) = 0 , ε = 2 , L = 20 , and ρ v = 30 .

Blurred answer
Students have asked these similar questions
1. A spring mass system serving as a shock absorber under a car's suspension, supports the M 1000 kg mass of the car. For this shock absorber, k = 1 × 10°N /m and c = 2 × 10° N s/m. The car drives over a corrugated road with force %3| F = 2× 10° sin(@t) N . Use your notes to model the second order differential equation suited to this application. Simplify the equation with the coefficient of x'" as one. Solve x (the general solution) in terms of w using the complimentary and particular solution method. In determining the coefficients of your particular solution, it will be required that you assume w – 1z w or 1 – o z -w. Do not use Matlab as its solution will not be identifiable in the solution entry. Do not determine the value of w. You must indicate in your solution: 1. The simplified differential equation in terms of the displacement x you will be solving 2. The m equation and complimentary solution xe 3. The choice for the particular solution and the actual particular solution x,…
1. The general form of linear second-order differential equation can be written in the form: و بار / كلية الهندسة Q4)/ grap dy q(x)y = r(x) d'y +p(x) dx dy b. dx - F(x)y = F(x) x2 dy dx - xy = C. d. r2 d?y dx2 -f(x)y = F(x) 2431)(5-1) 3 (3-21)2 a. (221 -91i) / 169 b. (21 + 52i)/ 13 c. (-90+220i)/169 d. (-7+17i)/ 13 2. Simplify: الحدار المك المراغة 3. If the roots of second order differential equation is complex conjugate, then the gene contain: a. sinusoidal functions and exponentials b. constant and two exponentials c. two constants and two exponentials d. two constants and one exponential 5 4. The order and degree of the differential: 3(3 - + 4y = sinx* are: d²y a. First-order, First-degree- b. First-order, second-degree Second -order, First -degree d. Second -order, second-degree dx2 lo - 2i tisi. 8- 12i 5. The particular solution of (D² + 4)y = cos 2x is equal to: a. sin 2x b. cos 2x 13+159 C. 4 cos 2x d. 4 sin 2x 5-12 lo Best wishes الامتحانية د. مازن ياسین عبود رئيس القسم بن فاضل…
Fit a power law model to the rheological behavior presented in the data: T [=]D/cm^2 y[=]1/2 1 3 2 - 3 30 4 52 5 80 6 100 7 130 8 160 9 175 10 190 11 218 12 240 13 265 (The second data in the table is not necessary to solve it.)Help yourself with matlab to solve it with the following formula: (Photo)

Chapter 28 Solutions

EBK NUMERICAL METHODS FOR ENGINEERS

Ch. 28 - An on is other malbatchre actor can be described...Ch. 28 - The following system is a classic example of stiff...Ch. 28 - 28.13 A biofilm with a thickness grows on the...Ch. 28 - 28.14 The following differential equation...Ch. 28 - Prob. 15PCh. 28 - 28.16 Bacteria growing in a batch reactor utilize...Ch. 28 - 28.17 Perform the same computation for the...Ch. 28 - Perform the same computation for the Lorenz...Ch. 28 - The following equation can be used to model the...Ch. 28 - Perform the same computation as in Prob. 28.19,...Ch. 28 - 28.21 An environmental engineer is interested in...Ch. 28 - 28.22 Population-growth dynamics are important in...Ch. 28 - 28.23 Although the model in Prob. 28.22 works...Ch. 28 - 28.25 A cable is hanging from two supports at A...Ch. 28 - 28.26 The basic differential equation of the...Ch. 28 - 28.27 The basic differential equation of the...Ch. 28 - A pond drains through a pipe, as shown in Fig....Ch. 28 - 28.29 Engineers and scientists use mass-spring...Ch. 28 - Under a number of simplifying assumptions, the...Ch. 28 - 28.31 In Prob. 28.30, a linearized groundwater...Ch. 28 - The Lotka-Volterra equations described in Sec....Ch. 28 - The growth of floating, unicellular algae below a...Ch. 28 - 28.34 The following ODEs have been proposed as a...Ch. 28 - 28.35 Perform the same computation as in the first...Ch. 28 - Solve the ODE in the first part of Sec. 8.3 from...Ch. 28 - 28.37 For a simple RL circuit, Kirchhoff’s voltage...Ch. 28 - In contrast to Prob. 28.37, real resistors may not...Ch. 28 - 28.39 Develop an eigenvalue problem for an LC...Ch. 28 - 28.40 Just as Fourier’s law and the heat balance...Ch. 28 - 28.41 Perform the same computation as in Sec....Ch. 28 - 28.42 The rate of cooling of a body can be...Ch. 28 - The rate of heat flow (conduction) between two...Ch. 28 - Repeat the falling parachutist problem (Example...Ch. 28 - 28.45 Suppose that, after falling for 13 s, the...Ch. 28 - 28.46 The following ordinary differential equation...Ch. 28 - 28.47 A forced damped spring-mass system (Fig....Ch. 28 - 28.48 The temperature distribution in a tapered...Ch. 28 - 28.49 The dynamics of a forced spring-mass-damper...Ch. 28 - The differential equation for the velocity of a...Ch. 28 - 28.51 Two masses are attached to a wall by linear...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Intro to the Laplace Transform & Three Examples; Author: Dr. Trefor Bazett;https://www.youtube.com/watch?v=KqokoYr_h1A;License: Standard YouTube License, CC-BY