Genetic Analysis: An Integrated Approach (3rd Edition)
Genetic Analysis: An Integrated Approach (3rd Edition)
3rd Edition
ISBN: 9780134605173
Author: Mark F. Sanders, John L. Bowman
Publisher: PEARSON
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 4, Problem 27P

Marfan syndrome is an autosomal dominant disorder in humans. It results from mutation of the gene on chromosome 15 , that produces the connective tissue protein fibrillin. In its wildtype form, fibrillin gives connective tissues, such as cartilage, elasticity. When mutated, however, fibrillin is rigid and produces a range of phenotypic complications, including excessive growth of the long bones of the leg and arm, sunken chest, dislocation of the lens of the eye, and susceptibility to aortic aneurysm, which can lead to sudden death in some cases. Different sets of symptoms are seen among various family members, as shown in the pedigree below. Each quadrant of the circles and squares represents a different symptom, as the key indicates.

Chapter 4, Problem 27P, Marfan syndrome is an autosomal dominant disorder in humans. It results from mutation of the gene on

Since all cases of Marfan syndrome are caused by mutation of the fibrillin gene, and all family members with Marfan syndrome carry the same mutant allele, how do you e xplain the differences shown in the pedigree?

Blurred answer
Students have asked these similar questions
Duchenne muscular dystrophy (DMD) is an X-linked recessive genetic disease caused by mutations in the gene that encodes dystrophin, a large protein that plays an important role in the development of normal muscle fibers. The Dystrophin gene is immense, spanning 2.5 million base pairs, and includes 79 exons and 78 introns. Many of the mutations that cause DMD produce premature stop codons, which bring protein synthesis to a halt, resulting in a greatly shortened and nonfunctional form of dystrophin. Some geneticists have proposed treating DMD patients by introducing small RNA molecules that cause the spliceosome to skip the exon containing the stop codon (A. Goyenvalle et al., 2004. Science 306:1796–1799). The introduction of the small RNAs will produce a protein that is somewhat shortened because an exon is skipped and some amino acids are missing, but it may still result in a protein that has some function. The small RNAs, antisense RNAs, used for exon skipping are complementary to…
Duchenne muscular dystrophy (DMD) is an X-linked recessive genetic disease caused by mutations in the gene that encodes dystrophin, a large protein that plays an important role in the development of normal muscle fibers. The dystrophin gene is immense, spanning 2.5 million base pairs, and includes 79 exons and 78 introns. Many of the mutations that cause DMD produce premature stop codons, which bring protein synthesis to a halt, resulting in a greatly shortened and nonfunctionalform of dystrophin. Some geneticists have proposed treating DMD patients by causing the spliceosome to skip the exon containing the stop codon. Exon skipping would produce a protein that is somewhat shortened (because an exon is skipped and some amino acids are missing), but might still result in a protein that had some function (A. Goyenvalle et al. 2004. Science 306:1796–1799). Propose a possible mechanism to bring about exon skipping for the treatment of DMD.
Achondroplasia is an autosomal dominant disorder characterized by disproportionate short stature: the legs and arms of people with achondroplasia are short compared with the head and trunk. The disorder is due to a base substitution in the gene, located on the short arm of chromosome 4, that encodes fibroblast growth factor receptor 3 (FGFR3). Although achondroplasia is clearly inherited as an autosomal dominant trait, more than 80% of the people who have achondroplasia are born to parents with normal stature. This high percentage indicates that most cases are caused by newly arising mutations; these cases (not inherited from an affected parent) are referred to as sporadic. Studies have demonstrated that sporadic cases of achondroplasia are almost always caused by mutations inherited from the father (paternal mutations). In addition, the occurrence of achondroplasia is higher among the children of older fathers; approximately 50% of children with achondroplasia are born to fathers…

Chapter 4 Solutions

Genetic Analysis: An Integrated Approach (3rd Edition)

Knowledge Booster
Background pattern image
Biology
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biology and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Human Heredity: Principles and Issues (MindTap Co...
Biology
ISBN:9781305251052
Author:Michael Cummings
Publisher:Cengage Learning
Mitochondrial mutations; Author: Useful Genetics;https://www.youtube.com/watch?v=GvgXe-3RJeU;License: CC-BY