Computer Systems: Program... -Access
Computer Systems: Program... -Access
3rd Edition
ISBN: 9780134071923
Author: Bryant
Publisher: PEARSON
Question
Book Icon
Chapter 4.1, Problem 4.2PP

A.

Program Plan Intro

Data movement instructions:

  • The different instructions are been grouped as “instruction classes”.
  • The instructions in a class performs same operation but with different sizes of operand.
  • The “Mov” class denotes data movement instructions that copy data from a source location to a destination.
  • The class has 4 instructions that includes:
    • movb:
      • It copies data from a source location to a destination.
      • It denotes an instruction that operates on 1 byte data size.
    • movw: 
      • It copies data from a source location to a destination.
      • It denotes an instruction that operates on 2 bytes data size.
    • movl:
      • It copies data from a source location to a destination.
      • It denotes an instruction that operates on 4 bytes data size.
    • movq:
      • It copies data from a source location to a destination.
      • It denotes an instruction that operates on 8 bytes data size.

Unary and Binary Operations:

  • The details of unary operations includes:
    • The single operand functions as both source as well as destination.
    • It can either be a memory location or a register.
    • The instruction “incq” causes 8 byte element on stack top to be incremented.
    • The instruction “decq” causes 8 byte element on stack top to be decremented.
  • The details of binary operations includes:
    • The first operand denotes the source.
    • The second operand works as both source as well as destination.
    • The first operand can either be an immediate value, memory location or register.
    • The second operand can either be a register or a memory location.

Jump Instruction:

  • The “jump” instruction causes execution to switch to an entirely new position in program.
  • The “label” indicates jump destinations in assembly code.
  • The “je” instruction denotes “jump if equal” or “jump if zero”.
    • The comparison operation is performed.
    • If result of comparison is either equal or zero, then jump operation takes place.
  • The “ja” instruction denotes “jump if above”.
    • The comparison operation is performed.
    • If result of comparison is greater, then jump operation takes place.
  • The “pop” instruction resumes execution of jump instruction.
  • The “jmpq” instruction jumps to given address. It denotes a direct jump.

B.

Program Plan Intro

Data movement instructions:

  • The different instructions are been grouped as “instruction classes”.
  • The instructions in a class performs same operation but with different sizes of operand.
  • The “Mov” class denotes data movement instructions that copy data from a source location to a destination.
  • The class has 4 instructions that includes:
    • movb:
      • It copies data from a source location to a destination.
      • It denotes an instruction that operates on 1 byte data size.
    • movw: 
      • It copies data from a source location to a destination.
      • It denotes an instruction that operates on 2 bytes data size.
    • movl:
      • It copies data from a source location to a destination.
      • It denotes an instruction that operates on 4 bytes data size.
    • movq:
      • It copies data from a source location to a destination.
      • It denotes an instruction that operates on 8 bytes data size.

Unary and Binary Operations:

  • The details of unary operations includes:
    • The single operand functions as both source as well as destination.
    • It can either be a memory location or a register.
    • The instruction “incq” causes 8 byte element on stack top to be incremented.
    • The instruction “decq” causes 8 byte element on stack top to be decremented.
  • The details of binary operations includes:
    • The first operand denotes the source.
    • The second operand works as both source as well as destination.
    • The first operand can either be an immediate value, memory location or register.
    • The second operand can either be a register or a memory location.

Jump Instruction:

  • The “jump” instruction causes execution to switch to an entirely new position in program.
  • The “label” indicates jump destinations in assembly code.
  • The “je” instruction denotes “jump if equal” or “jump if zero”.
    • The comparison operation is performed.
    • If result of comparison is either equal or zero, then jump operation takes place.
  • The “ja” instruction denotes “jump if above”.
    • The comparison operation is performed.
    • If result of comparison is greater, then jump operation takes place.
  • The “pop” instruction resumes execution of jump instruction.
  • The “jmpq” instruction jumps to given address. It denotes a direct jump.

C.

Program Plan Intro

Data movement instructions:

  • The different instructions are been grouped as “instruction classes”.
  • The instructions in a class performs same operation but with different sizes of operand.
  • The “Mov” class denotes data movement instructions that copy data from a source location to a destination.
  • The class has 4 instructions that includes:
    • movb:
      • It copies data from a source location to a destination.
      • It denotes an instruction that operates on 1 byte data size.
    • movw: 
      • It copies data from a source location to a destination.
      • It denotes an instruction that operates on 2 bytes data size.
    • movl:
      • It copies data from a source location to a destination.
      • It denotes an instruction that operates on 4 bytes data size.
    • movq:
      • It copies data from a source location to a destination.
      • It denotes an instruction that operates on 8 bytes data size.

Unary and Binary Operations:

  • The details of unary operations includes:
    • The single operand functions as both source as well as destination.
    • It can either be a memory location or a register.
    • The instruction “incq” causes 8 byte element on stack top to be incremented.
    • The instruction “decq” causes 8 byte element on stack top to be decremented.
  • The details of binary operations includes:
    • The first operand denotes the source.
    • The second operand works as both source as well as destination.
    • The first operand can either be an immediate value, memory location or register.
    • The second operand can either be a register or a memory location.

Jump Instruction:

  • The “jump” instruction causes execution to switch to an entirely new position in program.
  • The “label” indicates jump destinations in assembly code.
  • The “je” instruction denotes “jump if equal” or “jump if zero”.
    • The comparison operation is performed.
    • If result of comparison is either equal or zero, then jump operation takes place.
  • The “ja” instruction denotes “jump if above”.
    • The comparison operation is performed.
    • If result of comparison is greater, then jump operation takes place.
  • The “pop” instruction resumes execution of jump instruction.
  • The “jmpq” instruction jumps to given address. It denotes a direct jump.

D.

Program Plan Intro

Data movement instructions:

  • The different instructions are been grouped as “instruction classes”.
  • The instructions in a class performs same operation but with different sizes of operand.
  • The “Mov” class denotes data movement instructions that copy data from a source location to a destination.
  • The class has 4 instructions that includes:
    • movb:
      • It copies data from a source location to a destination.
      • It denotes an instruction that operates on 1 byte data size.
    • movw: 
      • It copies data from a source location to a destination.
      • It denotes an instruction that operates on 2 bytes data size.
    • movl:
      • It copies data from a source location to a destination.
      • It denotes an instruction that operates on 4 bytes data size.
    • movq:
      • It copies data from a source location to a destination.
      • It denotes an instruction that operates on 8 bytes data size.

Unary and Binary Operations:

  • The details of unary operations includes:
    • The single operand functions as both source as well as destination.
    • It can either be a memory location or a register.
    • The instruction “incq” causes 8 byte element on stack top to be incremented.
    • The instruction “decq” causes 8 byte element on stack top to be decremented.
  • The details of binary operations includes:
    • The first operand denotes the source.
    • The second operand works as both source as well as destination.
    • The first operand can either be an immediate value, memory location or register.
    • The second operand can either be a register or a memory location.

Jump Instruction:

  • The “jump” instruction causes execution to switch to an entirely new position in program.
  • The “label” indicates jump destinations in assembly code.
  • The “je” instruction denotes “jump if equal” or “jump if zero”.
    • The comparison operation is performed.
    • If result of comparison is either equal or zero, then jump operation takes place.
  • The “ja” instruction denotes “jump if above”.
    • The comparison operation is performed.
    • If result of comparison is greater, then jump operation takes place.
  • The “pop” instruction resumes execution of jump instruction.
  • The “jmpq” instruction jumps to given address. It denotes a direct jump.

E.

Program Plan Intro

Data movement instructions:

  • The different instructions are been grouped as “instruction classes”.
  • The instructions in a class performs same operation but with different sizes of operand.
  • The “Mov” class denotes data movement instructions that copy data from a source location to a destination.
  • The class has 4 instructions that includes:
    • movb:
      • It copies data from a source location to a destination.
      • It denotes an instruction that operates on 1 byte data size.
    • movw: 
      • It copies data from a source location to a destination.
      • It denotes an instruction that operates on 2 bytes data size.
    • movl:
      • It copies data from a source location to a destination.
      • It denotes an instruction that operates on 4 bytes data size.
    • movq:
      • It copies data from a source location to a destination.
      • It denotes an instruction that operates on 8 bytes data size.

Unary and Binary Operations:

  • The details of unary operations includes:
    • The single operand functions as both source as well as destination.
    • It can either be a memory location or a register.
    • The instruction “incq” causes 8 byte element on stack top to be incremented.
    • The instruction “decq” causes 8 byte element on stack top to be decremented.
  • The details of binary operations includes:
    • The first operand denotes the source.
    • The second operand works as both source as well as destination.
    • The first operand can either be an immediate value, memory location or register.
    • The second operand can either be a register or a memory location.

Jump Instruction:

  • The “jump” instruction causes execution to switch to an entirely new position in program.
  • The “label” indicates jump destinations in assembly code.
  • The “je” instruction denotes “jump if equal” or “jump if zero”.
    • The comparison operation is performed.
    • If result of comparison is either equal or zero, then jump operation takes place.
  • The “ja” instruction denotes “jump if above”.
    • The comparison operation is performed.
    • If result of comparison is greater, then jump operation takes place.
  • The “pop” instruction resumes execution of jump instruction.
  • The “jmpq” instruction jumps to given address. It denotes a direct jump.

Blurred answer
Students have asked these similar questions
1. We wish to compare the performance of two different machines: M1 and M2. The following measurements have been made on these machines:   Program Time on M1 Time on M2 1 10 seconds 5 seconds 2 3 seconds 4 seconds Which machine is faster for each program, and by how much?   2. For M1 and M2 of problem 1, the following additional measurements are made:. Find the instruction execution rate (instructions per second) for each machine when running program 1.   Program Instructions executed on M1 Instructions executed on M2 1 200 x 106 160 x 106   3. For M1 and M2 of problem 1, if the clock rates are 200 MHz and 300 MHz, respectively, find the CPI for program 1 on both machines using the data provided in problems 1 and 2.   4. You are going to enhance a machine, and there are two possible improvements: either make multiply instructions run four times faster than before or make memory access instructions run two times faster than before. You…
4.1.1 Complete solution and answer only no need explanation Given three data points (1,6), (3,28), and (10, 231), What is the value of y at x = 2 if the function y = 2x2 + 3x + 1 passes through the three data points.
A program has the following breakdown: 25% ld (50% of them directly followed by a dependent instruction),25% sd, 30% r_type, 20% beq (80% of them are taken. Branches are calculated in the third cycle. What is the average CPI of the program when run on the pipelined RISC V implementation in the textbook?

Chapter 4 Solutions

Computer Systems: Program... -Access

Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
C++ for Engineers and Scientists
Computer Science
ISBN:9781133187844
Author:Bronson, Gary J.
Publisher:Course Technology Ptr