ORGANIC CHEMISTRY E-BOOK W/SMARTWORK5
ORGANIC CHEMISTRY E-BOOK W/SMARTWORK5
2nd Edition
ISBN: 9780393664034
Author: KARTY
Publisher: NORTON
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 5, Problem 5.52P
Interpretation Introduction

(a)

Interpretation:

Fischer projection of the given molecule is to be drawn.

Concept introduction:

A molecule containing a chain of carbon atoms is frequently represented in its zigzag conformation. If it contains multiple asymmetric centers, it is more convenient to draw its Fisher projection. Fischer projections are generally drawn with the longest carbon chain vertical. The two groups attached to each carbon except the first and last are shown on horizontal bonds. The carbon atoms in the middle of the chain are represented by the intersections of vertical and horizontal lines. The vertical lines represent bonds that are oriented away from the viewer while the horizontal bonds are oriented toward the viewer. The most oxidized group must be present at the top of the vertical line.

In the zig-zag conformation, if two groups on adjacent carbon atoms are on the same side of the plane and are shown by wedge bonds, then those groups will be on the opposite sides of the vertical chain in the Fischer projection.

In the zig-zag conformation, if two groups on adjacent carbon atoms are on the opposite sides of the plane and are shown by a wedge and a dash bond, then, in the Fischer projection, those groups will be on the same side of the vertical chain.

In the zig-zag conformation, if two groups on alternate carbon atoms are on opposite sides of the plane and are shown by a wedge and a dash bond, then, in the Fischer projection, those groups will be on the opposite sides of the vertical chain.

Expert Solution
Check Mark

Answer to Problem 5.52P

The Fischer projection of the given molecule is

ORGANIC CHEMISTRY E-BOOK W/SMARTWORK5, Chapter 5, Problem 5.52P , additional homework tip  1

Explanation of Solution

The given molecule is

ORGANIC CHEMISTRY E-BOOK W/SMARTWORK5, Chapter 5, Problem 5.52P , additional homework tip  2

The given molecule consists of a five carbon chain, each of which is numbered. C2, C3, and C4 are the asymmetric carbon atoms. We begin to draw the Fischer projection with the framework shown below:

ORGANIC CHEMISTRY E-BOOK W/SMARTWORK5, Chapter 5, Problem 5.52P , additional homework tip  3

The asymmetric centers are denoted by asterisks. Two of the bonds on each asymmetric center have been left with question marks because two substituents must still be added to each so that the stereochemical configuration at those carbon atoms in the Fischer projection matches with what was given in the dash-wedge notation.

Notice that in the zig-zag conformation, the OH groups on C2 and C3 carbon atoms lie on the same side of the plane and are shown by a wedge bond. Thus, these two groups must lie on opposite sides in the Fischer projection, as shown below:

ORGANIC CHEMISTRY E-BOOK W/SMARTWORK5, Chapter 5, Problem 5.52P , additional homework tip  4

The OH groups on C3 and C4 carbon atoms lie on the opposite side of the plane and are shown by a wedge and a dash bond. Thus, these two groups must lie on the same side in the Fischer projection, as shown below:

ORGANIC CHEMISTRY E-BOOK W/SMARTWORK5, Chapter 5, Problem 5.52P , additional homework tip  5

The OH groups on C2 and C4 carbon atoms lie on the opposite side of the plane and are shown by a wedge and a dash bond. Thus, these two groups must lie on the opposite side in the Fischer projection.

Thus, the OH groups on C3 and C4 carbon atoms must lie on the same side of the vertical chain, and OH group on C2 must lie on the opposite side. Then fill in the remaining groups on C2, C3, and C4 carbon atoms to complete the structure as below:

ORGANIC CHEMISTRY E-BOOK W/SMARTWORK5, Chapter 5, Problem 5.52P , additional homework tip  6

Thus, the structure above is the correct conversion from a given zig-zag conformation to a Fischer projection.

ORGANIC CHEMISTRY E-BOOK W/SMARTWORK5, Chapter 5, Problem 5.52P , additional homework tip  7

Conclusion

In the zig-zag conformation, if two groups on adjacent carbon atoms are on the opposite sides of the plane and are shown by a wedge and dash bond, then those groups will be on the same side of the vertical chain in the Fischer projection. In the zig-zag conformation, if two groups on adjacent carbon atoms are on opposite sides of the plane and are shown by a wedge and dash bond, then those groups will be on the same side of the vertical chain in the Fischer projection.

Interpretation Introduction

Interpretation:

(b)

Fischer projection of the given molecule is to be drawn.

Concept introduction:

A molecule containing a chain of carbon atoms is frequently represented in its zigzag conformation. If it contains multiple asymmetric centers, it is more convenient to draw its Fisher projection. Fischer projections are generally drawn with the longest carbon chain vertical. The two groups attached to each carbon except the first and last are shown on horizontal bonds. The carbon atoms in the middle of the chain are represented by the intersections of vertical and horizontal lines. The vertical lines represent bonds that are oriented away from the viewer while the horizontal bonds are oriented toward the viewer. The most oxidized group must be present at the top of the vertical line.

In the zig-zag conformation, if two groups on adjacent carbon atoms are on the same side of the plane and are shown by wedge bonds, then those groups will be on the opposite sides of the vertical chain in the Fischer projection.

In the zig-zag conformation, if two groups on adjacent carbon atoms are on the opposite sides of the plane and are shown by a wedge and a dash bond, then, in the Fischer projection, those groups will be on the same side of the vertical chain.

In the zig-zag conformation, if two groups on alternate carbon atoms are on opposite sides of the plane and are shown by a wedge and a dash bond, then, in the Fischer projection, those groups will be on the opposite sides of the vertical chain.

Expert Solution
Check Mark

Answer to Problem 5.52P

The Fischer projection of the given molecule is

ORGANIC CHEMISTRY E-BOOK W/SMARTWORK5, Chapter 5, Problem 5.52P , additional homework tip  8

Explanation of Solution

The given molecule is

ORGANIC CHEMISTRY E-BOOK W/SMARTWORK5, Chapter 5, Problem 5.52P , additional homework tip  9

The given molecule consists of a three carbon chain, each of which is numbered. C1 and C2 carbon atoms are the asymmetric carbon atoms. We begin to draw the Fischer projection with the framework shown below:

ORGANIC CHEMISTRY E-BOOK W/SMARTWORK5, Chapter 5, Problem 5.52P , additional homework tip  10

The asymmetric centers are denoted by asterisks. Two of the bonds on each asymmetric center have been left with question marks because two substituents must still be added to each so that the stereochemical configuration at those carbon atoms in the Fischer projection matches with what was given in the dash-wedge notation.

Notice that in the zig-zag conformation, the OH groups on C1 and C2 carbon atoms lie on the same side of the plane and are shown by a wedge bond. Thus, these two groups must lie on opposite side in the Fischer projection, as shown below:

ORGANIC CHEMISTRY E-BOOK W/SMARTWORK5, Chapter 5, Problem 5.52P , additional homework tip  11

Then fill in the remaining groups on C1 and C2 carbon atoms to complete the structure as below:

ORGANIC CHEMISTRY E-BOOK W/SMARTWORK5, Chapter 5, Problem 5.52P , additional homework tip  12

Thus, the structure above is the correct conversion from a given zig-zag conformation to a Fischer projection.

ORGANIC CHEMISTRY E-BOOK W/SMARTWORK5, Chapter 5, Problem 5.52P , additional homework tip  13

Conclusion

In the zig-zag conformation, if two groups on adjacent carbon atoms are on the opposite sides of the plane and are shown by a wedge and dash bond, then those groups will be on the same side of the vertical chain in the Fischer projection. In the zig-zag conformation, if two groups on adjacent carbon atoms are on opposite sides of the plane and are shown by a wedge and dash bond, then those groups will be on the same side of the vertical chain in the Fischer projection.

Interpretation Introduction

Interpretation:

(c)

Fischer projection of the given molecule is to be drawn.

Concept introduction:

A molecule containing a chain of carbon atoms is frequently represented in its zigzag conformation. If it contains multiple asymmetric centers, it is more convenient to draw its Fisher projection. Fischer projections are generally drawn with the longest carbon chain vertical. The two groups attached to each carbon except the first and last are shown on horizontal bonds. The carbon atoms in the middle of the chain are represented by the intersections of vertical and horizontal lines. The vertical lines represent bonds that are oriented away from the viewer while the horizontal bonds are oriented toward the viewer. The most oxidized group must be present at the top of the vertical line.

In the zig-zag conformation, if two groups on adjacent carbon atoms are on the same side of the plane and are shown by wedge bonds, then those groups will be on the opposite sides of the vertical chain in the Fischer projection.

In the zig-zag conformation, if two groups on adjacent carbon atoms are on the opposite sides of the plane and are shown by a wedge and a dash bond, then, in the Fischer projection, those groups will be on the same side of the vertical chain.

In the zig-zag conformation, if two groups on alternate carbon atoms are on opposite sides of the plane and are shown by a wedge and a dash bond, then, in the Fischer projection, those groups will be on the opposite sides of the vertical chain.

Expert Solution
Check Mark

Answer to Problem 5.52P

The Fischer projection of the given molecule is

ORGANIC CHEMISTRY E-BOOK W/SMARTWORK5, Chapter 5, Problem 5.52P , additional homework tip  14

Explanation of Solution

The given molecule is

ORGANIC CHEMISTRY E-BOOK W/SMARTWORK5, Chapter 5, Problem 5.52P , additional homework tip  15

The given molecule consists of a six carbon chain, each of which is numbered. C2, C3, C4, and C5 carbon atoms are the asymmetric carbon atoms. We begin to draw the Fischer projection with the framework shown below:

ORGANIC CHEMISTRY E-BOOK W/SMARTWORK5, Chapter 5, Problem 5.52P , additional homework tip  16

The asymmetric centers are denoted by asterisks. Two of the bonds on each asymmetric center have been left with question marks because two substituents must still be added to each so that the stereochemical configuration at those carbon atoms in the Fischer projection matches with what was given in the dash-wedge notation.

Notice that in the zig-zag conformation, the OH groups on C2 and C3 carbon atoms lie on the opposite side of the plane and are shown by a wedge and a dash bond. Thus, these two groups must lie on same side in the Fischer projection, as shown below:

ORGANIC CHEMISTRY E-BOOK W/SMARTWORK5, Chapter 5, Problem 5.52P , additional homework tip  17

Notice that in the zig-zag conformation, the OH groups on C3 and C4 carbon atoms lie on the same side of the plane and are shown by dash bonds. Thus, these two groups must lie on the opposite sides of the vertical chain in the Fischer projection, as shown below:

ORGANIC CHEMISTRY E-BOOK W/SMARTWORK5, Chapter 5, Problem 5.52P , additional homework tip  18

In the zig-zag conformation, the OH group and chlorine atom on C4 and C5 carbon atoms lie on the same side of the plane and are shown by dash bonds. Thus, these two groups must lie on the opposite sides of the vertical chain in the Fischer projection, as shown below:

ORGANIC CHEMISTRY E-BOOK W/SMARTWORK5, Chapter 5, Problem 5.52P , additional homework tip  19

Then place the remaining groups on C1 and C2 carbon atoms to complete the structure as below:

ORGANIC CHEMISTRY E-BOOK W/SMARTWORK5, Chapter 5, Problem 5.52P , additional homework tip  20

Conclusion

In the zig-zag conformation, if two groups on adjacent carbon atoms are on the opposite sides of the plane and are shown by a wedge and dash bond, then those groups will be on the same side of the vertical chain in the Fischer projection. In the zig-zag conformation, if two groups on adjacent carbon atoms are on opposite sides of the plane and are shown by a wedge and dash bond, then those groups will be on the same side of the vertical chain in the Fischer projection.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Which sawhorse drawing below has the identical conformation as the following Fischer projection?
Draw the chair conformation for the lowest energy conformation
For each of the following pairs of compounds, determine which compound is more stable (may be more helpful to draw out the chair conformations)

Chapter 5 Solutions

ORGANIC CHEMISTRY E-BOOK W/SMARTWORK5

Ch. 5 - Prob. 5.11PCh. 5 - Prob. 5.12PCh. 5 - Prob. 5.13PCh. 5 - Prob. 5.14PCh. 5 - Prob. 5.15PCh. 5 - Prob. 5.16PCh. 5 - Prob. 5.17PCh. 5 - Prob. 5.18PCh. 5 - Prob. 5.19PCh. 5 - Prob. 5.20PCh. 5 - Prob. 5.21PCh. 5 - Prob. 5.22PCh. 5 - Prob. 5.23PCh. 5 - Prob. 5.24PCh. 5 - Prob. 5.25PCh. 5 - Prob. 5.26PCh. 5 - Prob. 5.27PCh. 5 - Prob. 5.28PCh. 5 - Prob. 5.29PCh. 5 - Prob. 5.30PCh. 5 - Prob. 5.31PCh. 5 - Prob. 5.32PCh. 5 - Prob. 5.33PCh. 5 - Prob. 5.34PCh. 5 - Prob. 5.35PCh. 5 - Prob. 5.36PCh. 5 - Prob. 5.37PCh. 5 - Prob. 5.38PCh. 5 - Prob. 5.39PCh. 5 - Prob. 5.40PCh. 5 - Prob. 5.41PCh. 5 - Prob. 5.42PCh. 5 - Prob. 5.43PCh. 5 - Prob. 5.44PCh. 5 - Prob. 5.45PCh. 5 - Prob. 5.46PCh. 5 - Prob. 5.47PCh. 5 - Prob. 5.48PCh. 5 - Prob. 5.49PCh. 5 - Prob. 5.50PCh. 5 - Prob. 5.51PCh. 5 - Prob. 5.52PCh. 5 - Prob. 5.53PCh. 5 - Prob. 5.54PCh. 5 - Prob. 5.55PCh. 5 - Prob. 5.56PCh. 5 - Prob. 5.57PCh. 5 - Prob. 5.58PCh. 5 - Prob. 5.59PCh. 5 - Prob. 5.60PCh. 5 - Prob. 5.61PCh. 5 - Prob. 5.62PCh. 5 - Prob. 5.63PCh. 5 - Prob. 5.64PCh. 5 - Prob. 5.65PCh. 5 - Prob. 5.66PCh. 5 - Prob. 5.67PCh. 5 - Prob. 5.68PCh. 5 - Prob. 5.69PCh. 5 - Prob. 5.70PCh. 5 - Prob. 5.71PCh. 5 - Prob. 5.72PCh. 5 - Prob. 5.73PCh. 5 - Prob. 5.74PCh. 5 - Prob. 5.75PCh. 5 - Prob. 5.76PCh. 5 - Prob. 5.77PCh. 5 - Prob. 5.78PCh. 5 - Prob. 5.79PCh. 5 - Prob. 5.1YTCh. 5 - Prob. 5.2YTCh. 5 - Prob. 5.3YTCh. 5 - Prob. 5.4YTCh. 5 - Prob. 5.5YTCh. 5 - Prob. 5.6YTCh. 5 - Prob. 5.7YTCh. 5 - Prob. 5.8YTCh. 5 - Prob. 5.9YTCh. 5 - Prob. 5.10YTCh. 5 - Prob. 5.11YTCh. 5 - Prob. 5.12YTCh. 5 - Prob. 5.13YTCh. 5 - Prob. 5.14YTCh. 5 - Prob. 5.15YTCh. 5 - Prob. 5.16YTCh. 5 - Prob. 5.17YT
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Chapter 4 Alkanes and Cycloalkanes Lesson 2; Author: Linda Hanson;https://www.youtube.com/watch?v=AL_CM_Btef4;License: Standard YouTube License, CC-BY
Chapter 4 Alkanes and Cycloalkanes Lesson 1; Author: Linda Hanson;https://www.youtube.com/watch?v=PPIa6EHJMJw;License: Standard Youtube License