Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
8th Edition
ISBN: 9780073398174
Author: Yunus A. Cengel Dr., Michael A. Boles
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 5.5, Problem 178RP

A liquid R-134a bottle has an internal volume of 0.0015 m3. Initially it contains 0.55 kg of R-134a (saturated mixture) at 26°C. A valve is opened and R-134a vapor only (no liquid) is allowed to escape slowly such that temperature remains constant until the mass of R-134a remaining is 0.15 kg. Find the heat transfer with the surroundings that is needed to maintain the temperature and pressure of the R-134a constant.

Expert Solution & Answer
Check Mark
To determine

The heat transfer with the surrounding that is needed to maintain the temperature and pressure of R-134a constant.

Answer to Problem 178RP

The heat transfer with the surrounding that is needed to maintain the temperature and pressure of R-134a constant is 72.8kJ.

Explanation of Solution

Write the equation of mass balance.

minme=Δmsystem (I)

Here, the inlet mass is min, the exit mass is me and the change in mass of the system is Δmsystem.

The change in mass of the system for the control volume is expressed as,

Δmsystem=(m2m1)cv

Here, the subscripts 1 and 2 indicates the initial and final states of the system.

Consider the given rigid container as the control volume.

Initially the container is filled with liquid refrigerant and the valve is in closed position, further no other mass is allowed to enter the container. Hence, the inlet mass is neglected i.e. min=0.

Rewrite the Equation (I) as follows.

0me=(m2m1)cvme=m1m2 (II)

Write the formula for initial specific volume (v1).

v1=νm1 (III)

Write the formula for final specific volume (v2).

v2=νm2 (IV)

Here, the volume is ν, the specific volume is v, the mass is m, and the subscript 1 indicates the initial state, the subscript 2 indicates the final state.

Write the energy balance equation.

EinEout=ΔEsystem{[Qin+Win+min(h+ke+pe)in][Qe+We+me(h+ke+pe)e]}=[m2(u+ke+pe)2m1(u+ke+pe)1]system (V)

Here, the heat transfer is Q, the work transfer is W, the enthalpy is h, the internal energy is u, the kinetic energy is ke, the potential energy is pe and the change in net energy of the system is ΔEsystem; the suffixes 1 and 2 indicates the inlet and outlet of the system.

The process is maintained at isothermal at the open condition of valve, there is no heat transfer while the mass leaves the container .i.e. Qe=0. There is no work transfer, i.e. (Win=We=0). Neglect the kinetic and potential energy changes i.e. (Δke=Δpe=0). There is no mass inlet for the rigid container, the inlet mass is neglected i.e. (min=0).

The Equation (V) reduced as follows.

Qinmehe=m2u2m1u1Qin=m2u2m1u1+mehe (VI)

At the initial state 1:

The rigid container consist of saturated mixture refrigerant at 26°C.

Refer Table A-11, “Saturated refrigerant-134a-Temperature table”.

Obtain the following corresponding to the temperature of 26°C.

vf,1=0.0008312m3/kgvg,1=0.030008m3/kguf,1=87.26kJ/kgufg,1=156.89kJ/kg

The quality of the refrigerant at state 1 is expressed as follows.

x1=v1vf,1vg,1vf,1 (VII)

The internal energy of the refrigerant at state 1 is expressed as follows.

u1=uf,1+x1ufg,1 (VIII)

At the final state (2):

When the valve is opened, the vapor refrigerant only allowed to escape and the temperature is kept constant.

The final temperature of the refrigerant is also 26°C.

Refer Table A-12, “Saturated refrigerant-134a-Temperature table”.

Obtain the following corresponding to the temperature of 26°C.

vf,2=0.0008312m3/kgvg,2=0.030008m3/kguf,2=87.26kJ/kgufg,2=156.89kJ/kg

The quality of the refrigerant at state 2 is expressed as follows.

x2=v2vf,2vg,2vf,2 (IX)

The internal energy of the refrigerant at state 2 is expressed as follows.

u2=uf,2+x2ufg,2 (X)

Conclusion:

Substitute 0.55kg for m1 and 0.15kg for m2 in Equation (II).

me=0.55kg0.15kg=0.40kg

Substitute 0.0015m3 for ν and 0.55kg for m1 in Equation (III).

v1=0.0015m30.55kg=0.002727m3/kg

Substitute 0.0015m3 for ν and 0.15kg for m2 in Equation (IV).

v2=0.0015m30.15kg=0.01m3/kg

Substitute 0.002727m3/kg for v1, 0.0008312m3/kg for vf,1, and 0.030008m3/kg for vg,1 in Equation (VII).

x1=0.002727m3/kg0.0008312m3/kg0.030008m3/kg0.0008312m3/kg=0.00189580.0291768=0.064976

Substitute 0.064976 for x1, 87.26kJ/kg for uf,1, and 156.89kJ/kg for ufg,1 in

Equation (VIII).

u1=87.26kJ/kg+(0.064976)(156.89kJ/kg)=87.26kJ/kg+10.194085kJ/kg=97.4541kJ/kg97.45kJ/kg

Substitute 0.01m3/kg for v2, 0.0008312m3/kg for vf,2, and 0.030008m3/kg for vg,2 in Equation (IX).

x2=0.01m3/kg0.0008312m3/kg0.030008m3/kg0.0008312m3/kg=0.00916880.0291768=0.31425

Substitute 0.31425 for x2, 87.26kJ/kg for uf,2, and 156.89kJ/kg for ufg,2 in

Equation (X).

u2=87.26kJ/kg+(0.31425)(156.89kJ/kg)=87.26kJ/kg+49.3027kJ/kg=136.5627kJ/kg136.56kJ/kg

Here, the temperature is kept constant until the final state and the vapor only exits the tank. Hence the exit enthalpy is expressed as follows.

he=hg@26°C

Refer Table A-12, “Saturated refrigerant-134a-Temperature table”.

The exit enthalpy (he) corresponding to the temperature of 26°C is 264.73kJ/kg.

Substitute 0.15kg for m2, 136.56kJ/kg for u2, 0.55kg for m1, 97.45kJ/kg for u1, 0.40kg for me, and 264.73kJ/kg for he in Equation (VI).

Qin=[(0.15kg)(136.56kJ/kg)(0.55kg)(97.45kJ/kg)+(0.40kg)(264.73kJ/kg)]=(20.48453.5975+105.892)kJ=72.7785kJ72.8kJ

Thus, the heat transfer with the surrounding that is needed to maintain the temperature and pressure of R-134a constant is 72.8kJ.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
What is the maximum volume that 3 kg of oxygen at 950 kPa and 373°C can be adiabatically expanded to in a piston–cylinder device if the final pressure is to be 100 kPa?
A 0.06-m3 rigid tank initially contains refrigerant- 134a at 0.8 MPa and 100 percent quality. The tank is connected by a valve to a supply line that carries refrigerant- 134a at 1.2 MPa and 36°C. Now the valve is opened, and the refrigerant is allowed to enter the tank. The valve is closed when it is observed that the tank contains saturated liquid at 1.2 MPa. Determine (a) the mass of the refrigerant that has entered the tank and (b) the amount of heat transfer.
Water is contained in a constant volume tank as a saturated mixture at 90 degrees C. When it is heated, the water pressure and temperature become 200kPa and 300 degrees C. Determine the initail quality of the water in the tank, the heat transfer per unit mass of the water, and the change in entropy per unit mass of the water.

Chapter 5 Solutions

Thermodynamics: An Engineering Approach

Ch. 5.5 - 5–11 A spherical hot-air balloon is initially...Ch. 5.5 - A desktop computer is to be cooled by a fan whose...Ch. 5.5 - 5–13 A pump increases the water pressure from 100...Ch. 5.5 - Refrigerant-134a enters a 28-cm-diameter pipe...Ch. 5.5 - Prob. 15PCh. 5.5 - Prob. 16PCh. 5.5 - 5–17C What is flow energy? Do fluids at rest...Ch. 5.5 - How do the energies of a flowing fluid and a fluid...Ch. 5.5 - Prob. 19PCh. 5.5 - Prob. 20PCh. 5.5 - Refrigerant-134a enters the compressor of a...Ch. 5.5 - Steam is leaving a pressure cooker whose operating...Ch. 5.5 - A diffuser is an adiabatic device that decreases...Ch. 5.5 - The kinetic energy of a fluid increases as it is...Ch. 5.5 - Prob. 25PCh. 5.5 - Air enters a nozzle steadily at 50 psia, 140F, and...Ch. 5.5 - The stators in a gas turbine are designed to...Ch. 5.5 - The diffuser in a jet engine is designed to...Ch. 5.5 - Air at 600 kPa and 500 K enters an adiabatic...Ch. 5.5 - Prob. 30PCh. 5.5 - Prob. 31PCh. 5.5 - Air at 13 psia and 65F enters an adiabatic...Ch. 5.5 - Carbon dioxide enters an adiabatic nozzle steadily...Ch. 5.5 - Refrigerant-134a at 700 kPa and 120C enters an...Ch. 5.5 - Prob. 35PCh. 5.5 - Refrigerant-134a enters a diffuser steadily as...Ch. 5.5 - Prob. 38PCh. 5.5 - Air at 80 kPa, 27C, and 220 m/s enters a diffuser...Ch. 5.5 - 5–40C Consider an air compressor operating...Ch. 5.5 - Prob. 41PCh. 5.5 - Somebody proposes the following system to cool a...Ch. 5.5 - 5–43E Air flows steadily through an adiabatic...Ch. 5.5 - Prob. 44PCh. 5.5 - Prob. 45PCh. 5.5 - Steam flows steadily through an adiabatic turbine....Ch. 5.5 - Prob. 48PCh. 5.5 - Steam flows steadily through a turbine at a rate...Ch. 5.5 - Prob. 50PCh. 5.5 - Carbon dioxide enters an adiabatic compressor at...Ch. 5.5 - Prob. 52PCh. 5.5 - 5–54 An adiabatic gas turbine expands air at 1300...Ch. 5.5 - Prob. 55PCh. 5.5 - Prob. 56PCh. 5.5 - Air enters the compressor of a gas-turbine plant...Ch. 5.5 - Why are throttling devices commonly used in...Ch. 5.5 - Would you expect the temperature of air to drop as...Ch. 5.5 - Prob. 60PCh. 5.5 - During a throttling process, the temperature of a...Ch. 5.5 - Refrigerant-134a is throttled from the saturated...Ch. 5.5 - A saturated liquidvapor mixture of water, called...Ch. 5.5 - Prob. 64PCh. 5.5 - A well-insulated valve is used to throttle steam...Ch. 5.5 - Refrigerant-134a enters the expansion valve of a...Ch. 5.5 - Prob. 68PCh. 5.5 - Consider a steady-flow heat exchanger involving...Ch. 5.5 - Prob. 70PCh. 5.5 - Prob. 71PCh. 5.5 - Prob. 72PCh. 5.5 - Prob. 73PCh. 5.5 - Prob. 74PCh. 5.5 - Prob. 76PCh. 5.5 - Steam is to be condensed on the shell side of a...Ch. 5.5 - Prob. 78PCh. 5.5 - Air (cp = 1.005 kJ/kgC) is to be preheated by hot...Ch. 5.5 - Prob. 80PCh. 5.5 - Refrigerant-134a at 1 MPa and 90C is to be cooled...Ch. 5.5 - Prob. 82PCh. 5.5 - An air-conditioning system involves the mixing of...Ch. 5.5 - The evaporator of a refrigeration cycle is...Ch. 5.5 - Steam is to be condensed in the condenser of a...Ch. 5.5 - Steam is to be condensed in the condenser of a...Ch. 5.5 - Two mass streams of the same ideal gas are mixed...Ch. 5.5 - Prob. 89PCh. 5.5 - A 110-volt electrical heater is used to warm 0.3...Ch. 5.5 - The fan on a personal computer draws 0.3 ft3/s of...Ch. 5.5 - Prob. 92PCh. 5.5 - 5–93 A scaled electronic box is to be cooled by...Ch. 5.5 - Prob. 94PCh. 5.5 - Prob. 95PCh. 5.5 - Prob. 96PCh. 5.5 - Prob. 97PCh. 5.5 - A computer cooled by a fan contains eight PCBs,...Ch. 5.5 - Prob. 99PCh. 5.5 - A long roll of 2-m-wide and 0.5-cm-thick 1-Mn...Ch. 5.5 - Prob. 101PCh. 5.5 - Prob. 102PCh. 5.5 - A house has an electric heating system that...Ch. 5.5 - Steam enters a long, horizontal pipe with an inlet...Ch. 5.5 - Refrigerant-134a enters the condenser of a...Ch. 5.5 - Prob. 106PCh. 5.5 - Water is heated in an insulated, constant-diameter...Ch. 5.5 - Prob. 108PCh. 5.5 - Air enters the duct of an air-conditioning system...Ch. 5.5 - A rigid, insulated tank that is initially...Ch. 5.5 - 5–113 A rigid, insulated tank that is initially...Ch. 5.5 - Prob. 114PCh. 5.5 - A 0.2-m3 rigid tank equipped with a pressure...Ch. 5.5 - Prob. 116PCh. 5.5 - Prob. 117PCh. 5.5 - Prob. 118PCh. 5.5 - Prob. 119PCh. 5.5 - An air-conditioning system is to be filled from a...Ch. 5.5 - Oxygen is supplied to a medical facility from ten...Ch. 5.5 - Prob. 122PCh. 5.5 - A 0.3-m3 rigid tank is filled with saturated...Ch. 5.5 - Prob. 124PCh. 5.5 - Prob. 125PCh. 5.5 - Prob. 126PCh. 5.5 - The air-release flap on a hot-air balloon is used...Ch. 5.5 - An insulated 0.15-m3 tank contains helium at 3 MPa...Ch. 5.5 - An insulated 40-ft3 rigid tank contains air at 50...Ch. 5.5 - A vertical pistoncylinder device initially...Ch. 5.5 - A vertical piston-cylinder device initially...Ch. 5.5 - Prob. 135RPCh. 5.5 - Prob. 136RPCh. 5.5 - Air at 4.18 kg/m3 enters a nozzle that has an...Ch. 5.5 - An air compressor compresses 15 L/s of air at 120...Ch. 5.5 - 5–139 Saturated refrigerant-134a vapor at 34°C is...Ch. 5.5 - A steam turbine operates with 1.6 MPa and 350C...Ch. 5.5 - Prob. 141RPCh. 5.5 - Prob. 142RPCh. 5.5 - Prob. 143RPCh. 5.5 - Steam enters a nozzle with a low velocity at 150C...Ch. 5.5 - Prob. 146RPCh. 5.5 - Prob. 147RPCh. 5.5 - Prob. 148RPCh. 5.5 - Prob. 149RPCh. 5.5 - Cold water enters a steam generator at 20C and...Ch. 5.5 - Prob. 151RPCh. 5.5 - An ideal gas expands in an adiabatic turbine from...Ch. 5.5 - Prob. 153RPCh. 5.5 - Prob. 154RPCh. 5.5 - Prob. 155RPCh. 5.5 - Prob. 156RPCh. 5.5 - Prob. 157RPCh. 5.5 - Prob. 158RPCh. 5.5 - Prob. 159RPCh. 5.5 - Prob. 160RPCh. 5.5 - Prob. 161RPCh. 5.5 - Prob. 162RPCh. 5.5 - Prob. 163RPCh. 5.5 - The ventilating fan of the bathroom of a building...Ch. 5.5 - Determine the rate of sensible heat loss from a...Ch. 5.5 - An air-conditioning system requires airflow at the...Ch. 5.5 - The maximum flow rate of standard shower heads is...Ch. 5.5 - An adiabatic air compressor is to be powered by a...Ch. 5.5 - Prob. 171RPCh. 5.5 - Prob. 172RPCh. 5.5 - Prob. 173RPCh. 5.5 - Prob. 174RPCh. 5.5 - Prob. 175RPCh. 5.5 - A tank with an internal volume of 1 m3 contains...Ch. 5.5 - A liquid R-134a bottle has an internal volume of...Ch. 5.5 - Prob. 179RPCh. 5.5 - Prob. 181RPCh. 5.5 - Prob. 182RPCh. 5.5 - Prob. 184RPCh. 5.5 - A pistoncylinder device initially contains 1.2 kg...Ch. 5.5 - In a single-flash geothermal power plant,...Ch. 5.5 - The turbocharger of an internal combustion engine...Ch. 5.5 - A building with an internal volume of 400 m3 is to...Ch. 5.5 - Prob. 189RPCh. 5.5 - Prob. 190RPCh. 5.5 - Prob. 191RPCh. 5.5 - Prob. 192FEPCh. 5.5 - Prob. 193FEPCh. 5.5 - An adiabatic heat exchanger is used to heat cold...Ch. 5.5 - A heat exchanger is used to heat cold water at 15C...Ch. 5.5 - An adiabatic heat exchanger is used to heat cold...Ch. 5.5 - In a shower, cold water at 10C flowing at a rate...Ch. 5.5 - Prob. 198FEPCh. 5.5 - Hot combustion gases (assumed to have the...Ch. 5.5 - Steam expands in a turbine from 4 MPa and 500C to...Ch. 5.5 - Steam is compressed by an adiabatic compressor...Ch. 5.5 - Refrigerant-134a is compressed by a compressor...Ch. 5.5 - Prob. 203FEPCh. 5.5 - Prob. 204FEPCh. 5.5 - Air at 27C and 5 atm is throttled by a valve to 1...Ch. 5.5 - Steam at 1 MPa and 300C is throttled adiabatically...Ch. 5.5 - Air is to be heated steadily by an 8-kW electric...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
First Law of Thermodynamics, Basic Introduction - Internal Energy, Heat and Work - Chemistry; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=NyOYW07-L5g;License: Standard youtube license