SYSTEM DYNAMICS>LOOSELEAF<
SYSTEM DYNAMICS>LOOSELEAF<
3rd Edition
ISBN: 9781260163087
Author: Palm
Publisher: MCG
bartleby

Videos

Textbook Question
Book Icon
Chapter 7, Problem 7.38P

(a) Determine the capacitance of a spherical tank of radius R, shown in

Figure P7.38.
(b) Obtain a model of the pressure at the bottom of the tank, given the mass flow rate qmi.

Chapter 7, Problem 7.38P, (a) Determine the capacitance of a spherical tank of radius R, shown in Figure P7.38. (b) Obtain a , example  1Chapter 7, Problem 7.38P, (a) Determine the capacitance of a spherical tank of radius R, shown in Figure P7.38. (b) Obtain a , example  2Chapter 7, Problem 7.38P, (a) Determine the capacitance of a spherical tank of radius R, shown in Figure P7.38. (b) Obtain a , example  3

Figure P7.38 A spherical tank.

Blurred answer
Students have asked these similar questions
Water is being pumped the through one inch diameter piping arrangement to a higher elevation (5 meters up). Assume incompressible fluid conditions and some heat losses to the surroundings. At the inlet water pressure is 1 bar, temperature 15C, and volumetric flow rate is 0.02 m3/s. At the exit pressure is 2.2 bar, temperature is 10C and velocity of the stream is 40 m/s. Determine: a.Density of the inlet stream using NIST tables.  b.Mass flow rate [kg/s] c.Determine h2 from known p2 and T2 using NIST tables d.Find heat rate removed from Q=m(h1-h2) Use Energy Balance Equation with enthalpy difference and in the units of kW to find pumping power in kW. NOTE: The heat is removed from the system, so it should be negative in your equation! show all steps please
Water is being pumped the through one inch diameter piping arrangement to a higher elevation (5 meters up). Assume incompressible fluid conditions and some heat losses to the surroundings. At the inlet water pressure is 1 bar, temperature 15C, and volumetric flow rate is 0.02 m3/s. At the exit pressure is 2.2 bar, temperature is 10C and velocity of the stream is 40 m/s. Determine: a.Density of the inlet stream using NIST tables.  b.Mass flow rate [kg/s] c.Determine h2 from known p2 and T2 using NIST tables d.Find heat rate removed from Q=m(h1-h2) Use Energy Balance Equation with enthalpy difference and in the units of kW to find pumping power in kW. NOTE: The heat is removed from the system, so it should be negative in your equation!
2. A fan discharges 265 cu.m/min of air through a duct of 92 cm in diameter against a static pressure of 0.022 m of water. The fluid density is 995 kg/cu.m., the air temperature is 29°C and the barometric pressure reading is 730 mm Hg. If the power input to the fan is measured 3.5 hp, what are the total and static fan efficiencies?

Chapter 7 Solutions

SYSTEM DYNAMICS>LOOSELEAF<

Ch. 7 - 7.11 Derive the expression for the capacitance of...Ch. 7 - Air flows in a certain cylindrical pipe 1 m long...Ch. 7 - Derive the expression for the linearized...Ch. 7 - Consider the cylindrical container treated in...Ch. 7 - A certain tank has a bottom area A = 20 m2. The...Ch. 7 - A certain tank has a circular bottom area A = 20...Ch. 7 - The water inflow rate to a certain tank was kept...Ch. 7 - Prob. 7.18PCh. 7 - Prob. 7.19PCh. 7 - In the liquid level system shown in Figure P7.20,...Ch. 7 - The water height in a certain tank was measured at...Ch. 7 - Derive the model for the system shown in Figure...Ch. 7 - (a) Develop a model of the two liquid heights in...Ch. 7 - Prob. 7.24PCh. 7 - Design a piston-type damper using an oil with a...Ch. 7 - Prob. 7.26PCh. 7 - 7.27 An electric motor is sometimes used to move...Ch. 7 - Prob. 7.28PCh. 7 - Prob. 7.29PCh. 7 - Figure P7.3O shows an example of a hydraulic...Ch. 7 - Prob. 7.31PCh. 7 - Prob. 7.32PCh. 7 - Prob. 7.33PCh. 7 - Prob. 7.34PCh. 7 - Prob. 7.35PCh. 7 - Prob. 7.36PCh. 7 - Prob. 7.37PCh. 7 - (a) Determine the capacitance of a spherical tank...Ch. 7 - Obtain the dynamic model of the liquid height It...Ch. 7 - Prob. 7.40PCh. 7 - Prob. 7.41PCh. 7 - Prob. 7.42PCh. 7 - Prob. 7.43PCh. 7 - Prob. 7.44PCh. 7 - Prob. 7.45PCh. 7 - The copper shaft shown in Figure P7.46 consists of...Ch. 7 - A certain radiator wall is made of copper with a...Ch. 7 - A particular house wall consists of three layers...Ch. 7 - A certain wall section is composed of a 12 in. by...Ch. 7 - Prob. 7.50PCh. 7 - Prob. 7.51PCh. 7 - A steel tank filled with water has a volume of...Ch. 7 - Prob. 7.53PCh. 7 - Prob. 7.54PCh. 7 - Prob. 7.55P
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License