Principles of Highway Engineering and Traffic Analysi (NEW!!)
Principles of Highway Engineering and Traffic Analysi (NEW!!)
6th Edition
ISBN: 9781119305026
Author: Fred L. Mannering, Scott S. Washburn
Publisher: WILEY
bartleby

Concept explainers

Question
Book Icon
Chapter 8, Problem 16P
To determine

The total saved travel time.

Blurred answer
Students have asked these similar questions
[T] The following table provides hypothetical data regarding the level of service for a certain highway. Plot vehicles per hour per lane on the x-axis and highway speed on the y-axis. Compute the average decrease in speed (in miles per hour) per unit increase in congestion (vehicles per hour per lane) as the latter increases from 600 to 1000, from 1000 to 1500, and from 1500 to 2100. Does the decrease in miles per hour depend linearly on the increase in vehicles per hour per lane? Plot minutes per mile (60 times the reciprocal of miles per hour) as a function of vehicles per hour per lane. Is this function linear? Highway Speed Vehicles per Hour per Lane Density Range (vehicles / mi) > 60 < 600  < 10 60 - 57 600 - 1000  10 - 20 57 - 54 1000 - 1500 20 - 30 54 - 46 1500 - 1900 30 - 45 46 - 30 1900 - 2100 45 - 70 < 30 Unstable 70 - 200
Three routes connect an origin-destination pair with performance functions:t₁ = 20 +0.5x1t2 = 4+ 2x2t3=3+0.2x3with t in minutes and x in thousand vehicles per hour.(a) Determine the User Equilibrium flow on each route if q = 4000veh/h. (b) What is the minimum q (origin-destination demand) to ensure that all the three routes are used under user equilibrium? (c) Suppose that Route 1 is closed for repair. Find the system optimal flow on routes 2 and 3 and compute the total travel times.
Two routes connect an origin-destination pair with performance functions t₁ = 5 + (x₁/2)² and t₂ = 7+ (x2/4)² (with t's in minutes and x's in thousands of vehicles per hour). It is known that at user equilibrium, 75% of the origin-destination demand takes route 1. What percentage would take route 1 if a system-optimal solution were achieved, and how much travel time would be saved?
Knowledge Booster
Background pattern image
Civil Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Traffic and Highway Engineering
Civil Engineering
ISBN:9781305156241
Author:Garber, Nicholas J.
Publisher:Cengage Learning